annotate win64-msvc/include/kj/async-io.h @ 64:eccd51b72864

Update Win32 capnp builds to v0.6
author Chris Cannam
date Tue, 23 May 2017 09:16:54 +0100
parents 0f2d93caa50c
children
rev   line source
Chris@63 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
Chris@63 2 // Licensed under the MIT License:
Chris@63 3 //
Chris@63 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
Chris@63 5 // of this software and associated documentation files (the "Software"), to deal
Chris@63 6 // in the Software without restriction, including without limitation the rights
Chris@63 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
Chris@63 8 // copies of the Software, and to permit persons to whom the Software is
Chris@63 9 // furnished to do so, subject to the following conditions:
Chris@63 10 //
Chris@63 11 // The above copyright notice and this permission notice shall be included in
Chris@63 12 // all copies or substantial portions of the Software.
Chris@63 13 //
Chris@63 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
Chris@63 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Chris@63 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Chris@63 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
Chris@63 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
Chris@63 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
Chris@63 20 // THE SOFTWARE.
Chris@63 21
Chris@63 22 #ifndef KJ_ASYNC_IO_H_
Chris@63 23 #define KJ_ASYNC_IO_H_
Chris@63 24
Chris@63 25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
Chris@63 26 #pragma GCC system_header
Chris@63 27 #endif
Chris@63 28
Chris@63 29 #include "async.h"
Chris@63 30 #include "function.h"
Chris@63 31 #include "thread.h"
Chris@63 32 #include "time.h"
Chris@63 33
Chris@63 34 struct sockaddr;
Chris@63 35
Chris@63 36 namespace kj {
Chris@63 37
Chris@63 38 #if _WIN32
Chris@63 39 class Win32EventPort;
Chris@63 40 #else
Chris@63 41 class UnixEventPort;
Chris@63 42 #endif
Chris@63 43
Chris@63 44 class NetworkAddress;
Chris@63 45 class AsyncOutputStream;
Chris@63 46
Chris@63 47 // =======================================================================================
Chris@63 48 // Streaming I/O
Chris@63 49
Chris@63 50 class AsyncInputStream {
Chris@63 51 // Asynchronous equivalent of InputStream (from io.h).
Chris@63 52
Chris@63 53 public:
Chris@63 54 virtual Promise<size_t> read(void* buffer, size_t minBytes, size_t maxBytes);
Chris@63 55 virtual Promise<size_t> tryRead(void* buffer, size_t minBytes, size_t maxBytes) = 0;
Chris@63 56
Chris@63 57 Promise<void> read(void* buffer, size_t bytes);
Chris@63 58
Chris@63 59 virtual Maybe<uint64_t> tryGetLength();
Chris@63 60 // Get the remaining number of bytes that will be produced by this stream, if known.
Chris@63 61 //
Chris@63 62 // This is used e.g. to fill in the Content-Length header of an HTTP message. If unknown, the
Chris@63 63 // HTTP implementation may need to fall back to Transfer-Encoding: chunked.
Chris@63 64 //
Chris@63 65 // The default implementation always returns null.
Chris@63 66
Chris@63 67 virtual Promise<uint64_t> pumpTo(
Chris@63 68 AsyncOutputStream& output, uint64_t amount = kj::maxValue);
Chris@63 69 // Read `amount` bytes from this stream (or to EOF) and write them to `output`, returning the
Chris@63 70 // total bytes actually pumped (which is only less than `amount` if EOF was reached).
Chris@63 71 //
Chris@63 72 // Override this if your stream type knows how to pump itself to certain kinds of output
Chris@63 73 // streams more efficiently than via the naive approach. You can use
Chris@63 74 // kj::dynamicDowncastIfAvailable() to test for stream types you recognize, and if none match,
Chris@63 75 // delegate to the default implementation.
Chris@63 76 //
Chris@63 77 // The default implementation first tries calling output.tryPumpFrom(), but if that fails, it
Chris@63 78 // performs a naive pump by allocating a buffer and reading to it / writing from it in a loop.
Chris@63 79
Chris@63 80 Promise<Array<byte>> readAllBytes();
Chris@63 81 Promise<String> readAllText();
Chris@63 82 // Read until EOF and return as one big byte array or string.
Chris@63 83 };
Chris@63 84
Chris@63 85 class AsyncOutputStream {
Chris@63 86 // Asynchronous equivalent of OutputStream (from io.h).
Chris@63 87
Chris@63 88 public:
Chris@63 89 virtual Promise<void> write(const void* buffer, size_t size) = 0;
Chris@63 90 virtual Promise<void> write(ArrayPtr<const ArrayPtr<const byte>> pieces) = 0;
Chris@63 91
Chris@63 92 virtual Maybe<Promise<uint64_t>> tryPumpFrom(
Chris@63 93 AsyncInputStream& input, uint64_t amount = kj::maxValue);
Chris@63 94 // Implements double-dispatch for AsyncInputStream::pumpTo().
Chris@63 95 //
Chris@63 96 // This method should only be called from within an implementation of pumpTo().
Chris@63 97 //
Chris@63 98 // This method examines the type of `input` to find optimized ways to pump data from it to this
Chris@63 99 // output stream. If it finds one, it performs the pump. Otherwise, it returns null.
Chris@63 100 //
Chris@63 101 // The default implementation always returns null.
Chris@63 102 };
Chris@63 103
Chris@63 104 class AsyncIoStream: public AsyncInputStream, public AsyncOutputStream {
Chris@63 105 // A combination input and output stream.
Chris@63 106
Chris@63 107 public:
Chris@63 108 virtual void shutdownWrite() = 0;
Chris@63 109 // Cleanly shut down just the write end of the stream, while keeping the read end open.
Chris@63 110
Chris@63 111 virtual void abortRead() {}
Chris@63 112 // Similar to shutdownWrite, but this will shut down the read end of the stream, and should only
Chris@63 113 // be called when an error has occurred.
Chris@63 114
Chris@63 115 virtual void getsockopt(int level, int option, void* value, uint* length);
Chris@63 116 virtual void setsockopt(int level, int option, const void* value, uint length);
Chris@63 117 // Corresponds to getsockopt() and setsockopt() syscalls. Will throw an "unimplemented" exception
Chris@63 118 // if the stream is not a socket or the option is not appropriate for the socket type. The
Chris@63 119 // default implementations always throw "unimplemented".
Chris@63 120
Chris@63 121 virtual void getsockname(struct sockaddr* addr, uint* length);
Chris@63 122 virtual void getpeername(struct sockaddr* addr, uint* length);
Chris@63 123 // Corresponds to getsockname() and getpeername() syscalls. Will throw an "unimplemented"
Chris@63 124 // exception if the stream is not a socket. The default implementations always throw
Chris@63 125 // "unimplemented".
Chris@63 126 //
Chris@63 127 // Note that we don't provide methods that return NetworkAddress because it usually wouldn't
Chris@63 128 // be useful. You can't connect() to or listen() on these addresses, obviously, because they are
Chris@63 129 // ephemeral addresses for a single connection.
Chris@63 130 };
Chris@63 131
Chris@63 132 struct OneWayPipe {
Chris@63 133 // A data pipe with an input end and an output end. (Typically backed by pipe() system call.)
Chris@63 134
Chris@63 135 Own<AsyncInputStream> in;
Chris@63 136 Own<AsyncOutputStream> out;
Chris@63 137 };
Chris@63 138
Chris@63 139 struct TwoWayPipe {
Chris@63 140 // A data pipe that supports sending in both directions. Each end's output sends data to the
Chris@63 141 // other end's input. (Typically backed by socketpair() system call.)
Chris@63 142
Chris@63 143 Own<AsyncIoStream> ends[2];
Chris@63 144 };
Chris@63 145
Chris@63 146 class ConnectionReceiver {
Chris@63 147 // Represents a server socket listening on a port.
Chris@63 148
Chris@63 149 public:
Chris@63 150 virtual Promise<Own<AsyncIoStream>> accept() = 0;
Chris@63 151 // Accept the next incoming connection.
Chris@63 152
Chris@63 153 virtual uint getPort() = 0;
Chris@63 154 // Gets the port number, if applicable (i.e. if listening on IP). This is useful if you didn't
Chris@63 155 // specify a port when constructing the NetworkAddress -- one will have been assigned
Chris@63 156 // automatically.
Chris@63 157
Chris@63 158 virtual void getsockopt(int level, int option, void* value, uint* length);
Chris@63 159 virtual void setsockopt(int level, int option, const void* value, uint length);
Chris@63 160 // Same as the methods of AsyncIoStream.
Chris@63 161 };
Chris@63 162
Chris@63 163 // =======================================================================================
Chris@63 164 // Datagram I/O
Chris@63 165
Chris@63 166 class AncillaryMessage {
Chris@63 167 // Represents an ancillary message (aka control message) received using the recvmsg() system
Chris@63 168 // call (or equivalent). Most apps will not use this.
Chris@63 169
Chris@63 170 public:
Chris@63 171 inline AncillaryMessage(int level, int type, ArrayPtr<const byte> data);
Chris@63 172 AncillaryMessage() = default;
Chris@63 173
Chris@63 174 inline int getLevel() const;
Chris@63 175 // Originating protocol / socket level.
Chris@63 176
Chris@63 177 inline int getType() const;
Chris@63 178 // Protocol-specific message type.
Chris@63 179
Chris@63 180 template <typename T>
Chris@63 181 inline Maybe<const T&> as();
Chris@63 182 // Interpret the ancillary message as the given struct type. Most ancillary messages are some
Chris@63 183 // sort of struct, so this is a convenient way to access it. Returns nullptr if the message
Chris@63 184 // is smaller than the struct -- this can happen if the message was truncated due to
Chris@63 185 // insufficient ancillary buffer space.
Chris@63 186
Chris@63 187 template <typename T>
Chris@63 188 inline ArrayPtr<const T> asArray();
Chris@63 189 // Interpret the ancillary message as an array of items. If the message size does not evenly
Chris@63 190 // divide into elements of type T, the remainder is discarded -- this can happen if the message
Chris@63 191 // was truncated due to insufficient ancillary buffer space.
Chris@63 192
Chris@63 193 private:
Chris@63 194 int level;
Chris@63 195 int type;
Chris@63 196 ArrayPtr<const byte> data;
Chris@63 197 // Message data. In most cases you should use `as()` or `asArray()`.
Chris@63 198 };
Chris@63 199
Chris@63 200 class DatagramReceiver {
Chris@63 201 // Class encapsulating the recvmsg() system call. You must specify the DatagramReceiver's
Chris@63 202 // capacity in advance; if a received packet is larger than the capacity, it will be truncated.
Chris@63 203
Chris@63 204 public:
Chris@63 205 virtual Promise<void> receive() = 0;
Chris@63 206 // Receive a new message, overwriting this object's content.
Chris@63 207 //
Chris@63 208 // receive() may reuse the same buffers for content and ancillary data with each call.
Chris@63 209
Chris@63 210 template <typename T>
Chris@63 211 struct MaybeTruncated {
Chris@63 212 T value;
Chris@63 213
Chris@63 214 bool isTruncated;
Chris@63 215 // True if the Receiver's capacity was insufficient to receive the value and therefore the
Chris@63 216 // value is truncated.
Chris@63 217 };
Chris@63 218
Chris@63 219 virtual MaybeTruncated<ArrayPtr<const byte>> getContent() = 0;
Chris@63 220 // Get the content of the datagram.
Chris@63 221
Chris@63 222 virtual MaybeTruncated<ArrayPtr<const AncillaryMessage>> getAncillary() = 0;
Chris@63 223 // Ancilarry messages received with the datagram. See the recvmsg() system call and the cmsghdr
Chris@63 224 // struct. Most apps don't need this.
Chris@63 225 //
Chris@63 226 // If the returned value is truncated, then the last message in the array may itself be
Chris@63 227 // truncated, meaning its as<T>() method will return nullptr or its asArray<T>() method will
Chris@63 228 // return fewer elements than expected. Truncation can also mean that additional messages were
Chris@63 229 // available but discarded.
Chris@63 230
Chris@63 231 virtual NetworkAddress& getSource() = 0;
Chris@63 232 // Get the datagram sender's address.
Chris@63 233
Chris@63 234 struct Capacity {
Chris@63 235 size_t content = 8192;
Chris@63 236 // How much space to allocate for the datagram content. If a datagram is received that is
Chris@63 237 // larger than this, it will be truncated, with no way to recover the tail.
Chris@63 238
Chris@63 239 size_t ancillary = 0;
Chris@63 240 // How much space to allocate for ancillary messages. As with content, if the ancillary data
Chris@63 241 // is larger than this, it will be truncated.
Chris@63 242 };
Chris@63 243 };
Chris@63 244
Chris@63 245 class DatagramPort {
Chris@63 246 public:
Chris@63 247 virtual Promise<size_t> send(const void* buffer, size_t size, NetworkAddress& destination) = 0;
Chris@63 248 virtual Promise<size_t> send(ArrayPtr<const ArrayPtr<const byte>> pieces,
Chris@63 249 NetworkAddress& destination) = 0;
Chris@63 250
Chris@63 251 virtual Own<DatagramReceiver> makeReceiver(
Chris@63 252 DatagramReceiver::Capacity capacity = DatagramReceiver::Capacity()) = 0;
Chris@63 253 // Create a new `Receiver` that can be used to receive datagrams. `capacity` specifies how much
Chris@63 254 // space to allocate for the received message. The `DatagramPort` must outlive the `Receiver`.
Chris@63 255
Chris@63 256 virtual uint getPort() = 0;
Chris@63 257 // Gets the port number, if applicable (i.e. if listening on IP). This is useful if you didn't
Chris@63 258 // specify a port when constructing the NetworkAddress -- one will have been assigned
Chris@63 259 // automatically.
Chris@63 260
Chris@63 261 virtual void getsockopt(int level, int option, void* value, uint* length);
Chris@63 262 virtual void setsockopt(int level, int option, const void* value, uint length);
Chris@63 263 // Same as the methods of AsyncIoStream.
Chris@63 264 };
Chris@63 265
Chris@63 266 // =======================================================================================
Chris@63 267 // Networks
Chris@63 268
Chris@63 269 class NetworkAddress {
Chris@63 270 // Represents a remote address to which the application can connect.
Chris@63 271
Chris@63 272 public:
Chris@63 273 virtual Promise<Own<AsyncIoStream>> connect() = 0;
Chris@63 274 // Make a new connection to this address.
Chris@63 275 //
Chris@63 276 // The address must not be a wildcard ("*"). If it is an IP address, it must have a port number.
Chris@63 277
Chris@63 278 virtual Own<ConnectionReceiver> listen() = 0;
Chris@63 279 // Listen for incoming connections on this address.
Chris@63 280 //
Chris@63 281 // The address must be local.
Chris@63 282
Chris@63 283 virtual Own<DatagramPort> bindDatagramPort();
Chris@63 284 // Open this address as a datagram (e.g. UDP) port.
Chris@63 285 //
Chris@63 286 // The address must be local.
Chris@63 287
Chris@63 288 virtual Own<NetworkAddress> clone() = 0;
Chris@63 289 // Returns an equivalent copy of this NetworkAddress.
Chris@63 290
Chris@63 291 virtual String toString() = 0;
Chris@63 292 // Produce a human-readable string which hopefully can be passed to Network::parseAddress()
Chris@63 293 // to reproduce this address, although whether or not that works of course depends on the Network
Chris@63 294 // implementation. This should be called only to display the address to human users, who will
Chris@63 295 // hopefully know what they are able to do with it.
Chris@63 296 };
Chris@63 297
Chris@63 298 class Network {
Chris@63 299 // Factory for NetworkAddress instances, representing the network services offered by the
Chris@63 300 // operating system.
Chris@63 301 //
Chris@63 302 // This interface typically represents broad authority, and well-designed code should limit its
Chris@63 303 // use to high-level startup code and user interaction. Low-level APIs should accept
Chris@63 304 // NetworkAddress instances directly and work from there, if at all possible.
Chris@63 305
Chris@63 306 public:
Chris@63 307 virtual Promise<Own<NetworkAddress>> parseAddress(StringPtr addr, uint portHint = 0) = 0;
Chris@63 308 // Construct a network address from a user-provided string. The format of the address
Chris@63 309 // strings is not specified at the API level, and application code should make no assumptions
Chris@63 310 // about them. These strings should always be provided by humans, and said humans will know
Chris@63 311 // what format to use in their particular context.
Chris@63 312 //
Chris@63 313 // `portHint`, if provided, specifies the "standard" IP port number for the application-level
Chris@63 314 // service in play. If the address turns out to be an IP address (v4 or v6), and it lacks a
Chris@63 315 // port number, this port will be used. If `addr` lacks a port number *and* `portHint` is
Chris@63 316 // omitted, then the returned address will only support listen() and bindDatagramPort()
Chris@63 317 // (not connect()), and an unused port will be chosen each time one of those methods is called.
Chris@63 318
Chris@63 319 virtual Own<NetworkAddress> getSockaddr(const void* sockaddr, uint len) = 0;
Chris@63 320 // Construct a network address from a legacy struct sockaddr.
Chris@63 321 };
Chris@63 322
Chris@63 323 // =======================================================================================
Chris@63 324 // I/O Provider
Chris@63 325
Chris@63 326 class AsyncIoProvider {
Chris@63 327 // Class which constructs asynchronous wrappers around the operating system's I/O facilities.
Chris@63 328 //
Chris@63 329 // Generally, the implementation of this interface must integrate closely with a particular
Chris@63 330 // `EventLoop` implementation. Typically, the EventLoop implementation itself will provide
Chris@63 331 // an AsyncIoProvider.
Chris@63 332
Chris@63 333 public:
Chris@63 334 virtual OneWayPipe newOneWayPipe() = 0;
Chris@63 335 // Creates an input/output stream pair representing the ends of a one-way pipe (e.g. created with
Chris@63 336 // the pipe(2) system call).
Chris@63 337
Chris@63 338 virtual TwoWayPipe newTwoWayPipe() = 0;
Chris@63 339 // Creates two AsyncIoStreams representing the two ends of a two-way pipe (e.g. created with
Chris@63 340 // socketpair(2) system call). Data written to one end can be read from the other.
Chris@63 341
Chris@63 342 virtual Network& getNetwork() = 0;
Chris@63 343 // Creates a new `Network` instance representing the networks exposed by the operating system.
Chris@63 344 //
Chris@63 345 // DO NOT CALL THIS except at the highest levels of your code, ideally in the main() function. If
Chris@63 346 // you call this from low-level code, then you are preventing higher-level code from injecting an
Chris@63 347 // alternative implementation. Instead, if your code needs to use network functionality, it
Chris@63 348 // should ask for a `Network` as a constructor or method parameter, so that higher-level code can
Chris@63 349 // chose what implementation to use. The system network is essentially a singleton. See:
Chris@63 350 // http://www.object-oriented-security.org/lets-argue/singletons
Chris@63 351 //
Chris@63 352 // Code that uses the system network should not make any assumptions about what kinds of
Chris@63 353 // addresses it will parse, as this could differ across platforms. String addresses should come
Chris@63 354 // strictly from the user, who will know how to write them correctly for their system.
Chris@63 355 //
Chris@63 356 // With that said, KJ currently supports the following string address formats:
Chris@63 357 // - IPv4: "1.2.3.4", "1.2.3.4:80"
Chris@63 358 // - IPv6: "1234:5678::abcd", "[1234:5678::abcd]:80"
Chris@63 359 // - Local IP wildcard (covers both v4 and v6): "*", "*:80"
Chris@63 360 // - Symbolic names: "example.com", "example.com:80", "example.com:http", "1.2.3.4:http"
Chris@63 361 // - Unix domain: "unix:/path/to/socket"
Chris@63 362
Chris@63 363 struct PipeThread {
Chris@63 364 // A combination of a thread and a two-way pipe that communicates with that thread.
Chris@63 365 //
Chris@63 366 // The fields are intentionally ordered so that the pipe will be destroyed (and therefore
Chris@63 367 // disconnected) before the thread is destroyed (and therefore joined). Thus if the thread
Chris@63 368 // arranges to exit when it detects disconnect, destruction should be clean.
Chris@63 369
Chris@63 370 Own<Thread> thread;
Chris@63 371 Own<AsyncIoStream> pipe;
Chris@63 372 };
Chris@63 373
Chris@63 374 virtual PipeThread newPipeThread(
Chris@63 375 Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)> startFunc) = 0;
Chris@63 376 // Create a new thread and set up a two-way pipe (socketpair) which can be used to communicate
Chris@63 377 // with it. One end of the pipe is passed to the thread's start function and the other end of
Chris@63 378 // the pipe is returned. The new thread also gets its own `AsyncIoProvider` instance and will
Chris@63 379 // already have an active `EventLoop` when `startFunc` is called.
Chris@63 380 //
Chris@63 381 // TODO(someday): I'm not entirely comfortable with this interface. It seems to be doing too
Chris@63 382 // much at once but I'm not sure how to cleanly break it down.
Chris@63 383
Chris@63 384 virtual Timer& getTimer() = 0;
Chris@63 385 // Returns a `Timer` based on real time. Time does not pass while event handlers are running --
Chris@63 386 // it only updates when the event loop polls for system events. This means that calling `now()`
Chris@63 387 // on this timer does not require a system call.
Chris@63 388 //
Chris@63 389 // This timer is not affected by changes to the system date. It is unspecified whether the timer
Chris@63 390 // continues to count while the system is suspended.
Chris@63 391 };
Chris@63 392
Chris@63 393 class LowLevelAsyncIoProvider {
Chris@63 394 // Similar to `AsyncIoProvider`, but represents a lower-level interface that may differ on
Chris@63 395 // different operating systems. You should prefer to use `AsyncIoProvider` over this interface
Chris@63 396 // whenever possible, as `AsyncIoProvider` is portable and friendlier to dependency-injection.
Chris@63 397 //
Chris@63 398 // On Unix, this interface can be used to import native file descriptors into the async framework.
Chris@63 399 // Different implementations of this interface might work on top of different event handling
Chris@63 400 // primitives, such as poll vs. epoll vs. kqueue vs. some higher-level event library.
Chris@63 401 //
Chris@63 402 // On Windows, this interface can be used to import native HANDLEs into the async framework.
Chris@63 403 // Different implementations of this interface might work on top of different event handling
Chris@63 404 // primitives, such as I/O completion ports vs. completion routines.
Chris@63 405 //
Chris@63 406 // TODO(port): Actually implement Windows support.
Chris@63 407
Chris@63 408 public:
Chris@63 409 // ---------------------------------------------------------------------------
Chris@63 410 // Unix-specific stuff
Chris@63 411
Chris@63 412 enum Flags {
Chris@63 413 // Flags controlling how to wrap a file descriptor.
Chris@63 414
Chris@63 415 TAKE_OWNERSHIP = 1 << 0,
Chris@63 416 // The returned object should own the file descriptor, automatically closing it when destroyed.
Chris@63 417 // The close-on-exec flag will be set on the descriptor if it is not already.
Chris@63 418 //
Chris@63 419 // If this flag is not used, then the file descriptor is not automatically closed and the
Chris@63 420 // close-on-exec flag is not modified.
Chris@63 421
Chris@63 422 #if !_WIN32
Chris@63 423 ALREADY_CLOEXEC = 1 << 1,
Chris@63 424 // Indicates that the close-on-exec flag is known already to be set, so need not be set again.
Chris@63 425 // Only relevant when combined with TAKE_OWNERSHIP.
Chris@63 426 //
Chris@63 427 // On Linux, all system calls which yield new file descriptors have flags or variants which
Chris@63 428 // set the close-on-exec flag immediately. Unfortunately, other OS's do not.
Chris@63 429
Chris@63 430 ALREADY_NONBLOCK = 1 << 2
Chris@63 431 // Indicates that the file descriptor is known already to be in non-blocking mode, so the flag
Chris@63 432 // need not be set again. Otherwise, all wrap*Fd() methods will enable non-blocking mode
Chris@63 433 // automatically.
Chris@63 434 //
Chris@63 435 // On Linux, all system calls which yield new file descriptors have flags or variants which
Chris@63 436 // enable non-blocking mode immediately. Unfortunately, other OS's do not.
Chris@63 437 #endif
Chris@63 438 };
Chris@63 439
Chris@63 440 #if _WIN32
Chris@63 441 typedef uintptr_t Fd;
Chris@63 442 // On Windows, the `fd` parameter to each of these methods must be a SOCKET, and must have the
Chris@63 443 // flag WSA_FLAG_OVERLAPPED (which socket() uses by default, but WSASocket() wants you to specify
Chris@63 444 // explicitly).
Chris@63 445 #else
Chris@63 446 typedef int Fd;
Chris@63 447 // On Unix, any arbitrary file descriptor is supported.
Chris@63 448 #endif
Chris@63 449
Chris@63 450 virtual Own<AsyncInputStream> wrapInputFd(Fd fd, uint flags = 0) = 0;
Chris@63 451 // Create an AsyncInputStream wrapping a file descriptor.
Chris@63 452 //
Chris@63 453 // `flags` is a bitwise-OR of the values of the `Flags` enum.
Chris@63 454
Chris@63 455 virtual Own<AsyncOutputStream> wrapOutputFd(Fd fd, uint flags = 0) = 0;
Chris@63 456 // Create an AsyncOutputStream wrapping a file descriptor.
Chris@63 457 //
Chris@63 458 // `flags` is a bitwise-OR of the values of the `Flags` enum.
Chris@63 459
Chris@63 460 virtual Own<AsyncIoStream> wrapSocketFd(Fd fd, uint flags = 0) = 0;
Chris@63 461 // Create an AsyncIoStream wrapping a socket file descriptor.
Chris@63 462 //
Chris@63 463 // `flags` is a bitwise-OR of the values of the `Flags` enum.
Chris@63 464
Chris@63 465 virtual Promise<Own<AsyncIoStream>> wrapConnectingSocketFd(
Chris@63 466 Fd fd, const struct sockaddr* addr, uint addrlen, uint flags = 0) = 0;
Chris@63 467 // Create an AsyncIoStream wrapping a socket and initiate a connection to the given address.
Chris@63 468 // The returned promise does not resolve until connection has completed.
Chris@63 469 //
Chris@63 470 // `flags` is a bitwise-OR of the values of the `Flags` enum.
Chris@63 471
Chris@63 472 virtual Own<ConnectionReceiver> wrapListenSocketFd(Fd fd, uint flags = 0) = 0;
Chris@63 473 // Create an AsyncIoStream wrapping a listen socket file descriptor. This socket should already
Chris@63 474 // have had `bind()` and `listen()` called on it, so it's ready for `accept()`.
Chris@63 475 //
Chris@63 476 // `flags` is a bitwise-OR of the values of the `Flags` enum.
Chris@63 477
Chris@63 478 virtual Own<DatagramPort> wrapDatagramSocketFd(Fd fd, uint flags = 0);
Chris@63 479
Chris@63 480 virtual Timer& getTimer() = 0;
Chris@63 481 // Returns a `Timer` based on real time. Time does not pass while event handlers are running --
Chris@63 482 // it only updates when the event loop polls for system events. This means that calling `now()`
Chris@63 483 // on this timer does not require a system call.
Chris@63 484 //
Chris@63 485 // This timer is not affected by changes to the system date. It is unspecified whether the timer
Chris@63 486 // continues to count while the system is suspended.
Chris@63 487 };
Chris@63 488
Chris@63 489 Own<AsyncIoProvider> newAsyncIoProvider(LowLevelAsyncIoProvider& lowLevel);
Chris@63 490 // Make a new AsyncIoProvider wrapping a `LowLevelAsyncIoProvider`.
Chris@63 491
Chris@63 492 struct AsyncIoContext {
Chris@63 493 Own<LowLevelAsyncIoProvider> lowLevelProvider;
Chris@63 494 Own<AsyncIoProvider> provider;
Chris@63 495 WaitScope& waitScope;
Chris@63 496
Chris@63 497 #if _WIN32
Chris@63 498 Win32EventPort& win32EventPort;
Chris@63 499 #else
Chris@63 500 UnixEventPort& unixEventPort;
Chris@63 501 // TEMPORARY: Direct access to underlying UnixEventPort, mainly for waiting on signals. This
Chris@63 502 // field will go away at some point when we have a chance to improve these interfaces.
Chris@63 503 #endif
Chris@63 504 };
Chris@63 505
Chris@63 506 AsyncIoContext setupAsyncIo();
Chris@63 507 // Convenience method which sets up the current thread with everything it needs to do async I/O.
Chris@63 508 // The returned objects contain an `EventLoop` which is wrapping an appropriate `EventPort` for
Chris@63 509 // doing I/O on the host system, so everything is ready for the thread to start making async calls
Chris@63 510 // and waiting on promises.
Chris@63 511 //
Chris@63 512 // You would typically call this in your main() loop or in the start function of a thread.
Chris@63 513 // Example:
Chris@63 514 //
Chris@63 515 // int main() {
Chris@63 516 // auto ioContext = kj::setupAsyncIo();
Chris@63 517 //
Chris@63 518 // // Now we can call an async function.
Chris@63 519 // Promise<String> textPromise = getHttp(*ioContext.provider, "http://example.com");
Chris@63 520 //
Chris@63 521 // // And we can wait for the promise to complete. Note that you can only use `wait()`
Chris@63 522 // // from the top level, not from inside a promise callback.
Chris@63 523 // String text = textPromise.wait(ioContext.waitScope);
Chris@63 524 // print(text);
Chris@63 525 // return 0;
Chris@63 526 // }
Chris@63 527 //
Chris@63 528 // WARNING: An AsyncIoContext can only be used in the thread and process that created it. In
Chris@63 529 // particular, note that after a fork(), an AsyncIoContext created in the parent process will
Chris@63 530 // not work correctly in the child, even if the parent ceases to use its copy. In particular
Chris@63 531 // note that this means that server processes which daemonize themselves at startup must wait
Chris@63 532 // until after daemonization to create an AsyncIoContext.
Chris@63 533
Chris@63 534 // =======================================================================================
Chris@63 535 // inline implementation details
Chris@63 536
Chris@63 537 inline AncillaryMessage::AncillaryMessage(
Chris@63 538 int level, int type, ArrayPtr<const byte> data)
Chris@63 539 : level(level), type(type), data(data) {}
Chris@63 540
Chris@63 541 inline int AncillaryMessage::getLevel() const { return level; }
Chris@63 542 inline int AncillaryMessage::getType() const { return type; }
Chris@63 543
Chris@63 544 template <typename T>
Chris@63 545 inline Maybe<const T&> AncillaryMessage::as() {
Chris@63 546 if (data.size() >= sizeof(T)) {
Chris@63 547 return *reinterpret_cast<const T*>(data.begin());
Chris@63 548 } else {
Chris@63 549 return nullptr;
Chris@63 550 }
Chris@63 551 }
Chris@63 552
Chris@63 553 template <typename T>
Chris@63 554 inline ArrayPtr<const T> AncillaryMessage::asArray() {
Chris@63 555 return arrayPtr(reinterpret_cast<const T*>(data.begin()), data.size() / sizeof(T));
Chris@63 556 }
Chris@63 557
Chris@63 558 } // namespace kj
Chris@63 559
Chris@63 560 #endif // KJ_ASYNC_IO_H_