annotate src/fftw-3.3.3/dft/simd/common/t1fv_12.c @ 138:eb184393b244

Rebuild with DW2 exception handling to match Qt
author Chris Cannam <cannam@all-day-breakfast.com>
date Thu, 27 Oct 2016 10:26:57 +0100
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:38:03 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 59 FP additions, 42 FP multiplications,
cannam@95 32 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
cannam@95 33 * 41 stack variables, 2 constants, and 24 memory accesses
cannam@95 34 */
cannam@95 35 #include "t1f.h"
cannam@95 36
cannam@95 37 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 41 {
cannam@95 42 INT m;
cannam@95 43 R *x;
cannam@95 44 x = ri;
cannam@95 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
cannam@95 46 V Tq, Ti, T7, TQ, Tu, TA, TU, Tk, TR, Tf, TE, TM;
cannam@95 47 {
cannam@95 48 V T9, TC, Tj, TD, Te;
cannam@95 49 {
cannam@95 50 V T1, T4, T2, Tm, Tx, To;
cannam@95 51 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 52 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 53 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 54 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 55 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 56 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 57 {
cannam@95 58 V T5, T3, Tn, Ty, Tp, Td, Tb, T8, Tc, Ta;
cannam@95 59 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 60 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 61 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 62 T5 = BYTWJ(&(W[TWVL * 14]), T4);
cannam@95 63 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@95 64 Tn = BYTWJ(&(W[0]), Tm);
cannam@95 65 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
cannam@95 66 Tp = BYTWJ(&(W[TWVL * 8]), To);
cannam@95 67 T9 = BYTWJ(&(W[TWVL * 10]), T8);
cannam@95 68 Td = BYTWJ(&(W[TWVL * 2]), Tc);
cannam@95 69 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
cannam@95 70 {
cannam@95 71 V Th, T6, Tt, Tz;
cannam@95 72 Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 73 TC = VSUB(T5, T3);
cannam@95 74 T6 = VADD(T3, T5);
cannam@95 75 Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 76 Tz = VADD(Tn, Tp);
cannam@95 77 Tq = VSUB(Tn, Tp);
cannam@95 78 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 79 TD = VSUB(Td, Tb);
cannam@95 80 Te = VADD(Tb, Td);
cannam@95 81 Ti = BYTWJ(&(W[TWVL * 20]), Th);
cannam@95 82 T7 = VFNMS(LDK(KP500000000), T6, T1);
cannam@95 83 TQ = VADD(T1, T6);
cannam@95 84 Tu = BYTWJ(&(W[TWVL * 4]), Tt);
cannam@95 85 TA = VFNMS(LDK(KP500000000), Tz, Ty);
cannam@95 86 TU = VADD(Ty, Tz);
cannam@95 87 }
cannam@95 88 }
cannam@95 89 }
cannam@95 90 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
cannam@95 91 TR = VADD(T9, Te);
cannam@95 92 Tf = VFNMS(LDK(KP500000000), Te, T9);
cannam@95 93 TE = VSUB(TC, TD);
cannam@95 94 TM = VADD(TC, TD);
cannam@95 95 }
cannam@95 96 {
cannam@95 97 V Tv, Tl, TI, Tg, TW, TS;
cannam@95 98 Tv = VADD(Tk, Ti);
cannam@95 99 Tl = VSUB(Ti, Tk);
cannam@95 100 TI = VADD(T7, Tf);
cannam@95 101 Tg = VSUB(T7, Tf);
cannam@95 102 TW = VADD(TQ, TR);
cannam@95 103 TS = VSUB(TQ, TR);
cannam@95 104 {
cannam@95 105 V TT, Tw, TL, Tr;
cannam@95 106 TT = VADD(Tu, Tv);
cannam@95 107 Tw = VFNMS(LDK(KP500000000), Tv, Tu);
cannam@95 108 TL = VSUB(Tl, Tq);
cannam@95 109 Tr = VADD(Tl, Tq);
cannam@95 110 {
cannam@95 111 V TP, TN, TG, Ts, TO, TK, TH, TF;
cannam@95 112 {
cannam@95 113 V TX, TV, TJ, TB;
cannam@95 114 TX = VADD(TT, TU);
cannam@95 115 TV = VSUB(TT, TU);
cannam@95 116 TJ = VADD(Tw, TA);
cannam@95 117 TB = VSUB(Tw, TA);
cannam@95 118 TP = VMUL(LDK(KP866025403), VADD(TM, TL));
cannam@95 119 TN = VMUL(LDK(KP866025403), VSUB(TL, TM));
cannam@95 120 TG = VFNMS(LDK(KP866025403), Tr, Tg);
cannam@95 121 Ts = VFMA(LDK(KP866025403), Tr, Tg);
cannam@95 122 ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
cannam@95 123 ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
cannam@95 124 ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
cannam@95 125 ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
cannam@95 126 TO = VADD(TI, TJ);
cannam@95 127 TK = VSUB(TI, TJ);
cannam@95 128 TH = VFMA(LDK(KP866025403), TE, TB);
cannam@95 129 TF = VFNMS(LDK(KP866025403), TE, TB);
cannam@95 130 }
cannam@95 131 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
cannam@95 132 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
cannam@95 133 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0]));
cannam@95 134 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
cannam@95 135 ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)]));
cannam@95 136 ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)]));
cannam@95 137 ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)]));
cannam@95 138 ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)]));
cannam@95 139 }
cannam@95 140 }
cannam@95 141 }
cannam@95 142 }
cannam@95 143 }
cannam@95 144 VLEAVE();
cannam@95 145 }
cannam@95 146
cannam@95 147 static const tw_instr twinstr[] = {
cannam@95 148 VTW(0, 1),
cannam@95 149 VTW(0, 2),
cannam@95 150 VTW(0, 3),
cannam@95 151 VTW(0, 4),
cannam@95 152 VTW(0, 5),
cannam@95 153 VTW(0, 6),
cannam@95 154 VTW(0, 7),
cannam@95 155 VTW(0, 8),
cannam@95 156 VTW(0, 9),
cannam@95 157 VTW(0, 10),
cannam@95 158 VTW(0, 11),
cannam@95 159 {TW_NEXT, VL, 0}
cannam@95 160 };
cannam@95 161
cannam@95 162 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };
cannam@95 163
cannam@95 164 void XSIMD(codelet_t1fv_12) (planner *p) {
cannam@95 165 X(kdft_dit_register) (p, t1fv_12, &desc);
cannam@95 166 }
cannam@95 167 #else /* HAVE_FMA */
cannam@95 168
cannam@95 169 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
cannam@95 170
cannam@95 171 /*
cannam@95 172 * This function contains 59 FP additions, 30 FP multiplications,
cannam@95 173 * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
cannam@95 174 * 28 stack variables, 2 constants, and 24 memory accesses
cannam@95 175 */
cannam@95 176 #include "t1f.h"
cannam@95 177
cannam@95 178 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 179 {
cannam@95 180 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 181 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 182 {
cannam@95 183 INT m;
cannam@95 184 R *x;
cannam@95 185 x = ri;
cannam@95 186 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
cannam@95 187 V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn;
cannam@95 188 V TK;
cannam@95 189 {
cannam@95 190 V T5, T3, T4, T2;
cannam@95 191 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 192 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 193 T5 = BYTWJ(&(W[TWVL * 14]), T4);
cannam@95 194 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 195 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@95 196 TH = VSUB(T5, T3);
cannam@95 197 T6 = VADD(T3, T5);
cannam@95 198 TA = VFNMS(LDK(KP500000000), T6, T1);
cannam@95 199 }
cannam@95 200 {
cannam@95 201 V Tu, Ts, Tp, Tt, Tr;
cannam@95 202 Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 203 Tq = BYTWJ(&(W[TWVL * 16]), Tp);
cannam@95 204 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 205 Tu = BYTWJ(&(W[TWVL * 8]), Tt);
cannam@95 206 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 207 Ts = BYTWJ(&(W[0]), Tr);
cannam@95 208 TE = VSUB(Tu, Ts);
cannam@95 209 Tv = VADD(Ts, Tu);
cannam@95 210 TL = VFNMS(LDK(KP500000000), Tv, Tq);
cannam@95 211 }
cannam@95 212 {
cannam@95 213 V Td, Tb, T8, Tc, Ta;
cannam@95 214 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 215 T9 = BYTWJ(&(W[TWVL * 10]), T8);
cannam@95 216 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 217 Td = BYTWJ(&(W[TWVL * 2]), Tc);
cannam@95 218 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 219 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
cannam@95 220 TI = VSUB(Td, Tb);
cannam@95 221 Te = VADD(Tb, Td);
cannam@95 222 TB = VFNMS(LDK(KP500000000), Te, T9);
cannam@95 223 }
cannam@95 224 {
cannam@95 225 V Tm, Tk, Th, Tl, Tj;
cannam@95 226 Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 227 Ti = BYTWJ(&(W[TWVL * 4]), Th);
cannam@95 228 Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 229 Tm = BYTWJ(&(W[TWVL * 20]), Tl);
cannam@95 230 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 231 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
cannam@95 232 TD = VSUB(Tm, Tk);
cannam@95 233 Tn = VADD(Tk, Tm);
cannam@95 234 TK = VFNMS(LDK(KP500000000), Tn, Ti);
cannam@95 235 }
cannam@95 236 {
cannam@95 237 V Tg, Ty, Tx, Tz;
cannam@95 238 {
cannam@95 239 V T7, Tf, To, Tw;
cannam@95 240 T7 = VADD(T1, T6);
cannam@95 241 Tf = VADD(T9, Te);
cannam@95 242 Tg = VSUB(T7, Tf);
cannam@95 243 Ty = VADD(T7, Tf);
cannam@95 244 To = VADD(Ti, Tn);
cannam@95 245 Tw = VADD(Tq, Tv);
cannam@95 246 Tx = VBYI(VSUB(To, Tw));
cannam@95 247 Tz = VADD(To, Tw);
cannam@95 248 }
cannam@95 249 ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)]));
cannam@95 250 ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
cannam@95 251 ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)]));
cannam@95 252 ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
cannam@95 253 }
cannam@95 254 {
cannam@95 255 V TS, TW, TV, TX;
cannam@95 256 {
cannam@95 257 V TQ, TR, TT, TU;
cannam@95 258 TQ = VADD(TA, TB);
cannam@95 259 TR = VADD(TK, TL);
cannam@95 260 TS = VSUB(TQ, TR);
cannam@95 261 TW = VADD(TQ, TR);
cannam@95 262 TT = VADD(TD, TE);
cannam@95 263 TU = VADD(TH, TI);
cannam@95 264 TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU)));
cannam@95 265 TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT)));
cannam@95 266 }
cannam@95 267 ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0]));
cannam@95 268 ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0]));
cannam@95 269 ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0]));
cannam@95 270 ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0]));
cannam@95 271 }
cannam@95 272 {
cannam@95 273 V TG, TP, TN, TO;
cannam@95 274 {
cannam@95 275 V TC, TF, TJ, TM;
cannam@95 276 TC = VSUB(TA, TB);
cannam@95 277 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
cannam@95 278 TG = VSUB(TC, TF);
cannam@95 279 TP = VADD(TC, TF);
cannam@95 280 TJ = VMUL(LDK(KP866025403), VSUB(TH, TI));
cannam@95 281 TM = VSUB(TK, TL);
cannam@95 282 TN = VBYI(VADD(TJ, TM));
cannam@95 283 TO = VBYI(VSUB(TJ, TM));
cannam@95 284 }
cannam@95 285 ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)]));
cannam@95 286 ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)]));
cannam@95 287 ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)]));
cannam@95 288 ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)]));
cannam@95 289 }
cannam@95 290 }
cannam@95 291 }
cannam@95 292 VLEAVE();
cannam@95 293 }
cannam@95 294
cannam@95 295 static const tw_instr twinstr[] = {
cannam@95 296 VTW(0, 1),
cannam@95 297 VTW(0, 2),
cannam@95 298 VTW(0, 3),
cannam@95 299 VTW(0, 4),
cannam@95 300 VTW(0, 5),
cannam@95 301 VTW(0, 6),
cannam@95 302 VTW(0, 7),
cannam@95 303 VTW(0, 8),
cannam@95 304 VTW(0, 9),
cannam@95 305 VTW(0, 10),
cannam@95 306 VTW(0, 11),
cannam@95 307 {TW_NEXT, VL, 0}
cannam@95 308 };
cannam@95 309
cannam@95 310 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };
cannam@95 311
cannam@95 312 void XSIMD(codelet_t1fv_12) (planner *p) {
cannam@95 313 X(kdft_dit_register) (p, t1fv_12, &desc);
cannam@95 314 }
cannam@95 315 #endif /* HAVE_FMA */