annotate src/opus-1.3/silk/x86/VAD_sse4_1.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /* Copyright (c) 2014, Cisco Systems, INC
cannam@154 2 Written by XiangMingZhu WeiZhou MinPeng YanWang
cannam@154 3
cannam@154 4 Redistribution and use in source and binary forms, with or without
cannam@154 5 modification, are permitted provided that the following conditions
cannam@154 6 are met:
cannam@154 7
cannam@154 8 - Redistributions of source code must retain the above copyright
cannam@154 9 notice, this list of conditions and the following disclaimer.
cannam@154 10
cannam@154 11 - Redistributions in binary form must reproduce the above copyright
cannam@154 12 notice, this list of conditions and the following disclaimer in the
cannam@154 13 documentation and/or other materials provided with the distribution.
cannam@154 14
cannam@154 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
cannam@154 16 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
cannam@154 17 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
cannam@154 18 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
cannam@154 19 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
cannam@154 20 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
cannam@154 21 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
cannam@154 22 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
cannam@154 23 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
cannam@154 24 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
cannam@154 25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cannam@154 26 */
cannam@154 27
cannam@154 28 #ifdef HAVE_CONFIG_H
cannam@154 29 #include "config.h"
cannam@154 30 #endif
cannam@154 31
cannam@154 32 #include <xmmintrin.h>
cannam@154 33 #include <emmintrin.h>
cannam@154 34 #include <smmintrin.h>
cannam@154 35
cannam@154 36 #include "main.h"
cannam@154 37 #include "stack_alloc.h"
cannam@154 38
cannam@154 39 /* Weighting factors for tilt measure */
cannam@154 40 static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
cannam@154 41
cannam@154 42 /***************************************/
cannam@154 43 /* Get the speech activity level in Q8 */
cannam@154 44 /***************************************/
cannam@154 45 opus_int silk_VAD_GetSA_Q8_sse4_1( /* O Return value, 0 if success */
cannam@154 46 silk_encoder_state *psEncC, /* I/O Encoder state */
cannam@154 47 const opus_int16 pIn[] /* I PCM input */
cannam@154 48 )
cannam@154 49 {
cannam@154 50 opus_int SA_Q15, pSNR_dB_Q7, input_tilt;
cannam@154 51 opus_int decimated_framelength1, decimated_framelength2;
cannam@154 52 opus_int decimated_framelength;
cannam@154 53 opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
cannam@154 54 opus_int32 sumSquared, smooth_coef_Q16;
cannam@154 55 opus_int16 HPstateTmp;
cannam@154 56 VARDECL( opus_int16, X );
cannam@154 57 opus_int32 Xnrg[ VAD_N_BANDS ];
cannam@154 58 opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
cannam@154 59 opus_int32 speech_nrg, x_tmp;
cannam@154 60 opus_int X_offset[ VAD_N_BANDS ];
cannam@154 61 opus_int ret = 0;
cannam@154 62 silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
cannam@154 63
cannam@154 64 SAVE_STACK;
cannam@154 65
cannam@154 66 /* Safety checks */
cannam@154 67 silk_assert( VAD_N_BANDS == 4 );
cannam@154 68 celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
cannam@154 69 celt_assert( psEncC->frame_length <= 512 );
cannam@154 70 celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
cannam@154 71
cannam@154 72 /***********************/
cannam@154 73 /* Filter and Decimate */
cannam@154 74 /***********************/
cannam@154 75 decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
cannam@154 76 decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
cannam@154 77 decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
cannam@154 78 /* Decimate into 4 bands:
cannam@154 79 0 L 3L L 3L 5L
cannam@154 80 - -- - -- --
cannam@154 81 8 8 2 4 4
cannam@154 82
cannam@154 83 [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz |
cannam@154 84
cannam@154 85 They're arranged to allow the minimal ( frame_length / 4 ) extra
cannam@154 86 scratch space during the downsampling process */
cannam@154 87 X_offset[ 0 ] = 0;
cannam@154 88 X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
cannam@154 89 X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
cannam@154 90 X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
cannam@154 91 ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
cannam@154 92
cannam@154 93 /* 0-8 kHz to 0-4 kHz and 4-8 kHz */
cannam@154 94 silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ],
cannam@154 95 X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
cannam@154 96
cannam@154 97 /* 0-4 kHz to 0-2 kHz and 2-4 kHz */
cannam@154 98 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
cannam@154 99 X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
cannam@154 100
cannam@154 101 /* 0-2 kHz to 0-1 kHz and 1-2 kHz */
cannam@154 102 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
cannam@154 103 X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
cannam@154 104
cannam@154 105 /*********************************************/
cannam@154 106 /* HP filter on lowest band (differentiator) */
cannam@154 107 /*********************************************/
cannam@154 108 X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
cannam@154 109 HPstateTmp = X[ decimated_framelength - 1 ];
cannam@154 110 for( i = decimated_framelength - 1; i > 0; i-- ) {
cannam@154 111 X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 );
cannam@154 112 X[ i ] -= X[ i - 1 ];
cannam@154 113 }
cannam@154 114 X[ 0 ] -= psSilk_VAD->HPstate;
cannam@154 115 psSilk_VAD->HPstate = HPstateTmp;
cannam@154 116
cannam@154 117 /*************************************/
cannam@154 118 /* Calculate the energy in each band */
cannam@154 119 /*************************************/
cannam@154 120 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 121 /* Find the decimated framelength in the non-uniformly divided bands */
cannam@154 122 decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
cannam@154 123
cannam@154 124 /* Split length into subframe lengths */
cannam@154 125 dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
cannam@154 126 dec_subframe_offset = 0;
cannam@154 127
cannam@154 128 /* Compute energy per sub-frame */
cannam@154 129 /* initialize with summed energy of last subframe */
cannam@154 130 Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
cannam@154 131 for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
cannam@154 132 __m128i xmm_X, xmm_acc;
cannam@154 133 sumSquared = 0;
cannam@154 134
cannam@154 135 xmm_acc = _mm_setzero_si128();
cannam@154 136
cannam@154 137 for( i = 0; i < dec_subframe_length - 7; i += 8 )
cannam@154 138 {
cannam@154 139 xmm_X = _mm_loadu_si128( (__m128i *)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) );
cannam@154 140 xmm_X = _mm_srai_epi16( xmm_X, 3 );
cannam@154 141 xmm_X = _mm_madd_epi16( xmm_X, xmm_X );
cannam@154 142 xmm_acc = _mm_add_epi32( xmm_acc, xmm_X );
cannam@154 143 }
cannam@154 144
cannam@154 145 xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) );
cannam@154 146 xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) );
cannam@154 147
cannam@154 148 sumSquared += _mm_cvtsi128_si32( xmm_acc );
cannam@154 149
cannam@154 150 for( ; i < dec_subframe_length; i++ ) {
cannam@154 151 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */
cannam@154 152 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */
cannam@154 153 x_tmp = silk_RSHIFT(
cannam@154 154 X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
cannam@154 155 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
cannam@154 156
cannam@154 157 /* Safety check */
cannam@154 158 silk_assert( sumSquared >= 0 );
cannam@154 159 }
cannam@154 160
cannam@154 161 /* Add/saturate summed energy of current subframe */
cannam@154 162 if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
cannam@154 163 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
cannam@154 164 } else {
cannam@154 165 /* Look-ahead subframe */
cannam@154 166 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
cannam@154 167 }
cannam@154 168
cannam@154 169 dec_subframe_offset += dec_subframe_length;
cannam@154 170 }
cannam@154 171 psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
cannam@154 172 }
cannam@154 173
cannam@154 174 /********************/
cannam@154 175 /* Noise estimation */
cannam@154 176 /********************/
cannam@154 177 silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
cannam@154 178
cannam@154 179 /***********************************************/
cannam@154 180 /* Signal-plus-noise to noise ratio estimation */
cannam@154 181 /***********************************************/
cannam@154 182 sumSquared = 0;
cannam@154 183 input_tilt = 0;
cannam@154 184 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 185 speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
cannam@154 186 if( speech_nrg > 0 ) {
cannam@154 187 /* Divide, with sufficient resolution */
cannam@154 188 if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
cannam@154 189 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
cannam@154 190 } else {
cannam@154 191 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
cannam@154 192 }
cannam@154 193
cannam@154 194 /* Convert to log domain */
cannam@154 195 SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
cannam@154 196
cannam@154 197 /* Sum-of-squares */
cannam@154 198 sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */
cannam@154 199
cannam@154 200 /* Tilt measure */
cannam@154 201 if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
cannam@154 202 /* Scale down SNR value for small subband speech energies */
cannam@154 203 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
cannam@154 204 }
cannam@154 205 input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
cannam@154 206 } else {
cannam@154 207 NrgToNoiseRatio_Q8[ b ] = 256;
cannam@154 208 }
cannam@154 209 }
cannam@154 210
cannam@154 211 /* Mean-of-squares */
cannam@154 212 sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
cannam@154 213
cannam@154 214 /* Root-mean-square approximation, scale to dBs, and write to output pointer */
cannam@154 215 pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
cannam@154 216
cannam@154 217 /*********************************/
cannam@154 218 /* Speech Probability Estimation */
cannam@154 219 /*********************************/
cannam@154 220 SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
cannam@154 221
cannam@154 222 /**************************/
cannam@154 223 /* Frequency Tilt Measure */
cannam@154 224 /**************************/
cannam@154 225 psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
cannam@154 226
cannam@154 227 /**************************************************/
cannam@154 228 /* Scale the sigmoid output based on power levels */
cannam@154 229 /**************************************************/
cannam@154 230 speech_nrg = 0;
cannam@154 231 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 232 /* Accumulate signal-without-noise energies, higher frequency bands have more weight */
cannam@154 233 speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
cannam@154 234 }
cannam@154 235
cannam@154 236 /* Power scaling */
cannam@154 237 if( speech_nrg <= 0 ) {
cannam@154 238 SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
cannam@154 239 } else if( speech_nrg < 32768 ) {
cannam@154 240 if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
cannam@154 241 speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 );
cannam@154 242 } else {
cannam@154 243 speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 );
cannam@154 244 }
cannam@154 245
cannam@154 246 /* square-root */
cannam@154 247 speech_nrg = silk_SQRT_APPROX( speech_nrg );
cannam@154 248 SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
cannam@154 249 }
cannam@154 250
cannam@154 251 /* Copy the resulting speech activity in Q8 */
cannam@154 252 psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
cannam@154 253
cannam@154 254 /***********************************/
cannam@154 255 /* Energy Level and SNR estimation */
cannam@154 256 /***********************************/
cannam@154 257 /* Smoothing coefficient */
cannam@154 258 smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
cannam@154 259
cannam@154 260 if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
cannam@154 261 smooth_coef_Q16 >>= 1;
cannam@154 262 }
cannam@154 263
cannam@154 264 for( b = 0; b < VAD_N_BANDS; b++ ) {
cannam@154 265 /* compute smoothed energy-to-noise ratio per band */
cannam@154 266 psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
cannam@154 267 NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
cannam@154 268
cannam@154 269 /* signal to noise ratio in dB per band */
cannam@154 270 SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
cannam@154 271 /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
cannam@154 272 psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
cannam@154 273 }
cannam@154 274
cannam@154 275 RESTORE_STACK;
cannam@154 276 return( ret );
cannam@154 277 }