cannam@154
|
1 /* Copyright (c) 2014, Cisco Systems, INC
|
cannam@154
|
2 Written by XiangMingZhu WeiZhou MinPeng YanWang
|
cannam@154
|
3
|
cannam@154
|
4 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
5 modification, are permitted provided that the following conditions
|
cannam@154
|
6 are met:
|
cannam@154
|
7
|
cannam@154
|
8 - Redistributions of source code must retain the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer.
|
cannam@154
|
10
|
cannam@154
|
11 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
12 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
13 documentation and/or other materials provided with the distribution.
|
cannam@154
|
14
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
cannam@154
|
16 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
cannam@154
|
17 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
cannam@154
|
18 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
cannam@154
|
19 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
cannam@154
|
20 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
cannam@154
|
21 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
cannam@154
|
22 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
cannam@154
|
23 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
cannam@154
|
24 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
cannam@154
|
25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 */
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include <xmmintrin.h>
|
cannam@154
|
33 #include <emmintrin.h>
|
cannam@154
|
34 #include <smmintrin.h>
|
cannam@154
|
35
|
cannam@154
|
36 #include "main.h"
|
cannam@154
|
37 #include "stack_alloc.h"
|
cannam@154
|
38
|
cannam@154
|
39 /* Weighting factors for tilt measure */
|
cannam@154
|
40 static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
|
cannam@154
|
41
|
cannam@154
|
42 /***************************************/
|
cannam@154
|
43 /* Get the speech activity level in Q8 */
|
cannam@154
|
44 /***************************************/
|
cannam@154
|
45 opus_int silk_VAD_GetSA_Q8_sse4_1( /* O Return value, 0 if success */
|
cannam@154
|
46 silk_encoder_state *psEncC, /* I/O Encoder state */
|
cannam@154
|
47 const opus_int16 pIn[] /* I PCM input */
|
cannam@154
|
48 )
|
cannam@154
|
49 {
|
cannam@154
|
50 opus_int SA_Q15, pSNR_dB_Q7, input_tilt;
|
cannam@154
|
51 opus_int decimated_framelength1, decimated_framelength2;
|
cannam@154
|
52 opus_int decimated_framelength;
|
cannam@154
|
53 opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
|
cannam@154
|
54 opus_int32 sumSquared, smooth_coef_Q16;
|
cannam@154
|
55 opus_int16 HPstateTmp;
|
cannam@154
|
56 VARDECL( opus_int16, X );
|
cannam@154
|
57 opus_int32 Xnrg[ VAD_N_BANDS ];
|
cannam@154
|
58 opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
|
cannam@154
|
59 opus_int32 speech_nrg, x_tmp;
|
cannam@154
|
60 opus_int X_offset[ VAD_N_BANDS ];
|
cannam@154
|
61 opus_int ret = 0;
|
cannam@154
|
62 silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
|
cannam@154
|
63
|
cannam@154
|
64 SAVE_STACK;
|
cannam@154
|
65
|
cannam@154
|
66 /* Safety checks */
|
cannam@154
|
67 silk_assert( VAD_N_BANDS == 4 );
|
cannam@154
|
68 celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
|
cannam@154
|
69 celt_assert( psEncC->frame_length <= 512 );
|
cannam@154
|
70 celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
|
cannam@154
|
71
|
cannam@154
|
72 /***********************/
|
cannam@154
|
73 /* Filter and Decimate */
|
cannam@154
|
74 /***********************/
|
cannam@154
|
75 decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
|
cannam@154
|
76 decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
|
cannam@154
|
77 decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
|
cannam@154
|
78 /* Decimate into 4 bands:
|
cannam@154
|
79 0 L 3L L 3L 5L
|
cannam@154
|
80 - -- - -- --
|
cannam@154
|
81 8 8 2 4 4
|
cannam@154
|
82
|
cannam@154
|
83 [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz |
|
cannam@154
|
84
|
cannam@154
|
85 They're arranged to allow the minimal ( frame_length / 4 ) extra
|
cannam@154
|
86 scratch space during the downsampling process */
|
cannam@154
|
87 X_offset[ 0 ] = 0;
|
cannam@154
|
88 X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
|
cannam@154
|
89 X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
|
cannam@154
|
90 X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
|
cannam@154
|
91 ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
|
cannam@154
|
92
|
cannam@154
|
93 /* 0-8 kHz to 0-4 kHz and 4-8 kHz */
|
cannam@154
|
94 silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ],
|
cannam@154
|
95 X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
|
cannam@154
|
96
|
cannam@154
|
97 /* 0-4 kHz to 0-2 kHz and 2-4 kHz */
|
cannam@154
|
98 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
|
cannam@154
|
99 X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
|
cannam@154
|
100
|
cannam@154
|
101 /* 0-2 kHz to 0-1 kHz and 1-2 kHz */
|
cannam@154
|
102 silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
|
cannam@154
|
103 X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
|
cannam@154
|
104
|
cannam@154
|
105 /*********************************************/
|
cannam@154
|
106 /* HP filter on lowest band (differentiator) */
|
cannam@154
|
107 /*********************************************/
|
cannam@154
|
108 X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
|
cannam@154
|
109 HPstateTmp = X[ decimated_framelength - 1 ];
|
cannam@154
|
110 for( i = decimated_framelength - 1; i > 0; i-- ) {
|
cannam@154
|
111 X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 );
|
cannam@154
|
112 X[ i ] -= X[ i - 1 ];
|
cannam@154
|
113 }
|
cannam@154
|
114 X[ 0 ] -= psSilk_VAD->HPstate;
|
cannam@154
|
115 psSilk_VAD->HPstate = HPstateTmp;
|
cannam@154
|
116
|
cannam@154
|
117 /*************************************/
|
cannam@154
|
118 /* Calculate the energy in each band */
|
cannam@154
|
119 /*************************************/
|
cannam@154
|
120 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
121 /* Find the decimated framelength in the non-uniformly divided bands */
|
cannam@154
|
122 decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
|
cannam@154
|
123
|
cannam@154
|
124 /* Split length into subframe lengths */
|
cannam@154
|
125 dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
|
cannam@154
|
126 dec_subframe_offset = 0;
|
cannam@154
|
127
|
cannam@154
|
128 /* Compute energy per sub-frame */
|
cannam@154
|
129 /* initialize with summed energy of last subframe */
|
cannam@154
|
130 Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
|
cannam@154
|
131 for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
|
cannam@154
|
132 __m128i xmm_X, xmm_acc;
|
cannam@154
|
133 sumSquared = 0;
|
cannam@154
|
134
|
cannam@154
|
135 xmm_acc = _mm_setzero_si128();
|
cannam@154
|
136
|
cannam@154
|
137 for( i = 0; i < dec_subframe_length - 7; i += 8 )
|
cannam@154
|
138 {
|
cannam@154
|
139 xmm_X = _mm_loadu_si128( (__m128i *)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) );
|
cannam@154
|
140 xmm_X = _mm_srai_epi16( xmm_X, 3 );
|
cannam@154
|
141 xmm_X = _mm_madd_epi16( xmm_X, xmm_X );
|
cannam@154
|
142 xmm_acc = _mm_add_epi32( xmm_acc, xmm_X );
|
cannam@154
|
143 }
|
cannam@154
|
144
|
cannam@154
|
145 xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) );
|
cannam@154
|
146 xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) );
|
cannam@154
|
147
|
cannam@154
|
148 sumSquared += _mm_cvtsi128_si32( xmm_acc );
|
cannam@154
|
149
|
cannam@154
|
150 for( ; i < dec_subframe_length; i++ ) {
|
cannam@154
|
151 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */
|
cannam@154
|
152 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */
|
cannam@154
|
153 x_tmp = silk_RSHIFT(
|
cannam@154
|
154 X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
|
cannam@154
|
155 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
|
cannam@154
|
156
|
cannam@154
|
157 /* Safety check */
|
cannam@154
|
158 silk_assert( sumSquared >= 0 );
|
cannam@154
|
159 }
|
cannam@154
|
160
|
cannam@154
|
161 /* Add/saturate summed energy of current subframe */
|
cannam@154
|
162 if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
|
cannam@154
|
163 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
|
cannam@154
|
164 } else {
|
cannam@154
|
165 /* Look-ahead subframe */
|
cannam@154
|
166 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
|
cannam@154
|
167 }
|
cannam@154
|
168
|
cannam@154
|
169 dec_subframe_offset += dec_subframe_length;
|
cannam@154
|
170 }
|
cannam@154
|
171 psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
|
cannam@154
|
172 }
|
cannam@154
|
173
|
cannam@154
|
174 /********************/
|
cannam@154
|
175 /* Noise estimation */
|
cannam@154
|
176 /********************/
|
cannam@154
|
177 silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
|
cannam@154
|
178
|
cannam@154
|
179 /***********************************************/
|
cannam@154
|
180 /* Signal-plus-noise to noise ratio estimation */
|
cannam@154
|
181 /***********************************************/
|
cannam@154
|
182 sumSquared = 0;
|
cannam@154
|
183 input_tilt = 0;
|
cannam@154
|
184 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
185 speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
|
cannam@154
|
186 if( speech_nrg > 0 ) {
|
cannam@154
|
187 /* Divide, with sufficient resolution */
|
cannam@154
|
188 if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
|
cannam@154
|
189 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
|
cannam@154
|
190 } else {
|
cannam@154
|
191 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
|
cannam@154
|
192 }
|
cannam@154
|
193
|
cannam@154
|
194 /* Convert to log domain */
|
cannam@154
|
195 SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
|
cannam@154
|
196
|
cannam@154
|
197 /* Sum-of-squares */
|
cannam@154
|
198 sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */
|
cannam@154
|
199
|
cannam@154
|
200 /* Tilt measure */
|
cannam@154
|
201 if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
|
cannam@154
|
202 /* Scale down SNR value for small subband speech energies */
|
cannam@154
|
203 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
|
cannam@154
|
204 }
|
cannam@154
|
205 input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
|
cannam@154
|
206 } else {
|
cannam@154
|
207 NrgToNoiseRatio_Q8[ b ] = 256;
|
cannam@154
|
208 }
|
cannam@154
|
209 }
|
cannam@154
|
210
|
cannam@154
|
211 /* Mean-of-squares */
|
cannam@154
|
212 sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
|
cannam@154
|
213
|
cannam@154
|
214 /* Root-mean-square approximation, scale to dBs, and write to output pointer */
|
cannam@154
|
215 pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
|
cannam@154
|
216
|
cannam@154
|
217 /*********************************/
|
cannam@154
|
218 /* Speech Probability Estimation */
|
cannam@154
|
219 /*********************************/
|
cannam@154
|
220 SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
|
cannam@154
|
221
|
cannam@154
|
222 /**************************/
|
cannam@154
|
223 /* Frequency Tilt Measure */
|
cannam@154
|
224 /**************************/
|
cannam@154
|
225 psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
|
cannam@154
|
226
|
cannam@154
|
227 /**************************************************/
|
cannam@154
|
228 /* Scale the sigmoid output based on power levels */
|
cannam@154
|
229 /**************************************************/
|
cannam@154
|
230 speech_nrg = 0;
|
cannam@154
|
231 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
232 /* Accumulate signal-without-noise energies, higher frequency bands have more weight */
|
cannam@154
|
233 speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
|
cannam@154
|
234 }
|
cannam@154
|
235
|
cannam@154
|
236 /* Power scaling */
|
cannam@154
|
237 if( speech_nrg <= 0 ) {
|
cannam@154
|
238 SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
|
cannam@154
|
239 } else if( speech_nrg < 32768 ) {
|
cannam@154
|
240 if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
|
cannam@154
|
241 speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 );
|
cannam@154
|
242 } else {
|
cannam@154
|
243 speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 );
|
cannam@154
|
244 }
|
cannam@154
|
245
|
cannam@154
|
246 /* square-root */
|
cannam@154
|
247 speech_nrg = silk_SQRT_APPROX( speech_nrg );
|
cannam@154
|
248 SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
|
cannam@154
|
249 }
|
cannam@154
|
250
|
cannam@154
|
251 /* Copy the resulting speech activity in Q8 */
|
cannam@154
|
252 psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
|
cannam@154
|
253
|
cannam@154
|
254 /***********************************/
|
cannam@154
|
255 /* Energy Level and SNR estimation */
|
cannam@154
|
256 /***********************************/
|
cannam@154
|
257 /* Smoothing coefficient */
|
cannam@154
|
258 smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
|
cannam@154
|
259
|
cannam@154
|
260 if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
|
cannam@154
|
261 smooth_coef_Q16 >>= 1;
|
cannam@154
|
262 }
|
cannam@154
|
263
|
cannam@154
|
264 for( b = 0; b < VAD_N_BANDS; b++ ) {
|
cannam@154
|
265 /* compute smoothed energy-to-noise ratio per band */
|
cannam@154
|
266 psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
|
cannam@154
|
267 NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
|
cannam@154
|
268
|
cannam@154
|
269 /* signal to noise ratio in dB per band */
|
cannam@154
|
270 SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
|
cannam@154
|
271 /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
|
cannam@154
|
272 psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
|
cannam@154
|
273 }
|
cannam@154
|
274
|
cannam@154
|
275 RESTORE_STACK;
|
cannam@154
|
276 return( ret );
|
cannam@154
|
277 }
|