cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "main_FLP.h"
|
cannam@154
|
33
|
cannam@154
|
34 /* Wrappers. Calls flp / fix code */
|
cannam@154
|
35
|
cannam@154
|
36 /* Convert AR filter coefficients to NLSF parameters */
|
cannam@154
|
37 void silk_A2NLSF_FLP(
|
cannam@154
|
38 opus_int16 *NLSF_Q15, /* O NLSF vector [ LPC_order ] */
|
cannam@154
|
39 const silk_float *pAR, /* I LPC coefficients [ LPC_order ] */
|
cannam@154
|
40 const opus_int LPC_order /* I LPC order */
|
cannam@154
|
41 )
|
cannam@154
|
42 {
|
cannam@154
|
43 opus_int i;
|
cannam@154
|
44 opus_int32 a_fix_Q16[ MAX_LPC_ORDER ];
|
cannam@154
|
45
|
cannam@154
|
46 for( i = 0; i < LPC_order; i++ ) {
|
cannam@154
|
47 a_fix_Q16[ i ] = silk_float2int( pAR[ i ] * 65536.0f );
|
cannam@154
|
48 }
|
cannam@154
|
49
|
cannam@154
|
50 silk_A2NLSF( NLSF_Q15, a_fix_Q16, LPC_order );
|
cannam@154
|
51 }
|
cannam@154
|
52
|
cannam@154
|
53 /* Convert LSF parameters to AR prediction filter coefficients */
|
cannam@154
|
54 void silk_NLSF2A_FLP(
|
cannam@154
|
55 silk_float *pAR, /* O LPC coefficients [ LPC_order ] */
|
cannam@154
|
56 const opus_int16 *NLSF_Q15, /* I NLSF vector [ LPC_order ] */
|
cannam@154
|
57 const opus_int LPC_order, /* I LPC order */
|
cannam@154
|
58 int arch /* I Run-time architecture */
|
cannam@154
|
59 )
|
cannam@154
|
60 {
|
cannam@154
|
61 opus_int i;
|
cannam@154
|
62 opus_int16 a_fix_Q12[ MAX_LPC_ORDER ];
|
cannam@154
|
63
|
cannam@154
|
64 silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order, arch );
|
cannam@154
|
65
|
cannam@154
|
66 for( i = 0; i < LPC_order; i++ ) {
|
cannam@154
|
67 pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
|
cannam@154
|
68 }
|
cannam@154
|
69 }
|
cannam@154
|
70
|
cannam@154
|
71 /******************************************/
|
cannam@154
|
72 /* Floating-point NLSF processing wrapper */
|
cannam@154
|
73 /******************************************/
|
cannam@154
|
74 void silk_process_NLSFs_FLP(
|
cannam@154
|
75 silk_encoder_state *psEncC, /* I/O Encoder state */
|
cannam@154
|
76 silk_float PredCoef[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */
|
cannam@154
|
77 opus_int16 NLSF_Q15[ MAX_LPC_ORDER ], /* I/O Normalized LSFs (quant out) (0 - (2^15-1)) */
|
cannam@154
|
78 const opus_int16 prev_NLSF_Q15[ MAX_LPC_ORDER ] /* I Previous Normalized LSFs (0 - (2^15-1)) */
|
cannam@154
|
79 )
|
cannam@154
|
80 {
|
cannam@154
|
81 opus_int i, j;
|
cannam@154
|
82 opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
|
cannam@154
|
83
|
cannam@154
|
84 silk_process_NLSFs( psEncC, PredCoef_Q12, NLSF_Q15, prev_NLSF_Q15);
|
cannam@154
|
85
|
cannam@154
|
86 for( j = 0; j < 2; j++ ) {
|
cannam@154
|
87 for( i = 0; i < psEncC->predictLPCOrder; i++ ) {
|
cannam@154
|
88 PredCoef[ j ][ i ] = ( silk_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
|
cannam@154
|
89 }
|
cannam@154
|
90 }
|
cannam@154
|
91 }
|
cannam@154
|
92
|
cannam@154
|
93 /****************************************/
|
cannam@154
|
94 /* Floating-point Silk NSQ wrapper */
|
cannam@154
|
95 /****************************************/
|
cannam@154
|
96 void silk_NSQ_wrapper_FLP(
|
cannam@154
|
97 silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
|
cannam@154
|
98 silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
|
cannam@154
|
99 SideInfoIndices *psIndices, /* I/O Quantization indices */
|
cannam@154
|
100 silk_nsq_state *psNSQ, /* I/O Noise Shaping Quantzation state */
|
cannam@154
|
101 opus_int8 pulses[], /* O Quantized pulse signal */
|
cannam@154
|
102 const silk_float x[] /* I Prefiltered input signal */
|
cannam@154
|
103 )
|
cannam@154
|
104 {
|
cannam@154
|
105 opus_int i, j;
|
cannam@154
|
106 opus_int16 x16[ MAX_FRAME_LENGTH ];
|
cannam@154
|
107 opus_int32 Gains_Q16[ MAX_NB_SUBFR ];
|
cannam@154
|
108 silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
|
cannam@154
|
109 opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ];
|
cannam@154
|
110 opus_int LTP_scale_Q14;
|
cannam@154
|
111
|
cannam@154
|
112 /* Noise shaping parameters */
|
cannam@154
|
113 opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
|
cannam@154
|
114 opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ]; /* Packs two int16 coefficients per int32 value */
|
cannam@154
|
115 opus_int Lambda_Q10;
|
cannam@154
|
116 opus_int Tilt_Q14[ MAX_NB_SUBFR ];
|
cannam@154
|
117 opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ];
|
cannam@154
|
118
|
cannam@154
|
119 /* Convert control struct to fix control struct */
|
cannam@154
|
120 /* Noise shape parameters */
|
cannam@154
|
121 for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
|
cannam@154
|
122 for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) {
|
cannam@154
|
123 AR_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
|
cannam@154
|
124 }
|
cannam@154
|
125 }
|
cannam@154
|
126
|
cannam@154
|
127 for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
|
cannam@154
|
128 LF_shp_Q14[ i ] = silk_LSHIFT32( silk_float2int( psEncCtrl->LF_AR_shp[ i ] * 16384.0f ), 16 ) |
|
cannam@154
|
129 (opus_uint16)silk_float2int( psEncCtrl->LF_MA_shp[ i ] * 16384.0f );
|
cannam@154
|
130 Tilt_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->Tilt[ i ] * 16384.0f );
|
cannam@154
|
131 HarmShapeGain_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
|
cannam@154
|
132 }
|
cannam@154
|
133 Lambda_Q10 = ( opus_int )silk_float2int( psEncCtrl->Lambda * 1024.0f );
|
cannam@154
|
134
|
cannam@154
|
135 /* prediction and coding parameters */
|
cannam@154
|
136 for( i = 0; i < psEnc->sCmn.nb_subfr * LTP_ORDER; i++ ) {
|
cannam@154
|
137 LTPCoef_Q14[ i ] = (opus_int16)silk_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
|
cannam@154
|
138 }
|
cannam@154
|
139
|
cannam@154
|
140 for( j = 0; j < 2; j++ ) {
|
cannam@154
|
141 for( i = 0; i < psEnc->sCmn.predictLPCOrder; i++ ) {
|
cannam@154
|
142 PredCoef_Q12[ j ][ i ] = (opus_int16)silk_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
|
cannam@154
|
143 }
|
cannam@154
|
144 }
|
cannam@154
|
145
|
cannam@154
|
146 for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
|
cannam@154
|
147 Gains_Q16[ i ] = silk_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
|
cannam@154
|
148 silk_assert( Gains_Q16[ i ] > 0 );
|
cannam@154
|
149 }
|
cannam@154
|
150
|
cannam@154
|
151 if( psIndices->signalType == TYPE_VOICED ) {
|
cannam@154
|
152 LTP_scale_Q14 = silk_LTPScales_table_Q14[ psIndices->LTP_scaleIndex ];
|
cannam@154
|
153 } else {
|
cannam@154
|
154 LTP_scale_Q14 = 0;
|
cannam@154
|
155 }
|
cannam@154
|
156
|
cannam@154
|
157 /* Convert input to fix */
|
cannam@154
|
158 for( i = 0; i < psEnc->sCmn.frame_length; i++ ) {
|
cannam@154
|
159 x16[ i ] = silk_float2int( x[ i ] );
|
cannam@154
|
160 }
|
cannam@154
|
161
|
cannam@154
|
162 /* Call NSQ */
|
cannam@154
|
163 if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
164 silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
|
cannam@154
|
165 AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
|
cannam@154
|
166 } else {
|
cannam@154
|
167 silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
|
cannam@154
|
168 AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
|
cannam@154
|
169 }
|
cannam@154
|
170 }
|
cannam@154
|
171
|
cannam@154
|
172 /***********************************************/
|
cannam@154
|
173 /* Floating-point Silk LTP quantiation wrapper */
|
cannam@154
|
174 /***********************************************/
|
cannam@154
|
175 void silk_quant_LTP_gains_FLP(
|
cannam@154
|
176 silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* O Quantized LTP gains */
|
cannam@154
|
177 opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */
|
cannam@154
|
178 opus_int8 *periodicity_index, /* O Periodicity index */
|
cannam@154
|
179 opus_int32 *sum_log_gain_Q7, /* I/O Cumulative max prediction gain */
|
cannam@154
|
180 silk_float *pred_gain_dB, /* O LTP prediction gain */
|
cannam@154
|
181 const silk_float XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Correlation matrix */
|
cannam@154
|
182 const silk_float xX[ MAX_NB_SUBFR * LTP_ORDER ], /* I Correlation vector */
|
cannam@154
|
183 const opus_int subfr_len, /* I Number of samples per subframe */
|
cannam@154
|
184 const opus_int nb_subfr, /* I Number of subframes */
|
cannam@154
|
185 int arch /* I Run-time architecture */
|
cannam@154
|
186 )
|
cannam@154
|
187 {
|
cannam@154
|
188 opus_int i, pred_gain_dB_Q7;
|
cannam@154
|
189 opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ];
|
cannam@154
|
190 opus_int32 XX_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
|
cannam@154
|
191 opus_int32 xX_Q17[ MAX_NB_SUBFR * LTP_ORDER ];
|
cannam@154
|
192
|
cannam@154
|
193 for( i = 0; i < nb_subfr * LTP_ORDER * LTP_ORDER; i++ ) {
|
cannam@154
|
194 XX_Q17[ i ] = (opus_int32)silk_float2int( XX[ i ] * 131072.0f );
|
cannam@154
|
195 }
|
cannam@154
|
196 for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
|
cannam@154
|
197 xX_Q17[ i ] = (opus_int32)silk_float2int( xX[ i ] * 131072.0f );
|
cannam@154
|
198 }
|
cannam@154
|
199
|
cannam@154
|
200 silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, sum_log_gain_Q7, &pred_gain_dB_Q7, XX_Q17, xX_Q17, subfr_len, nb_subfr, arch );
|
cannam@154
|
201
|
cannam@154
|
202 for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
|
cannam@154
|
203 B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
|
cannam@154
|
204 }
|
cannam@154
|
205
|
cannam@154
|
206 *pred_gain_dB = (silk_float)pred_gain_dB_Q7 * ( 1.0f / 128.0f );
|
cannam@154
|
207 }
|