annotate src/opus-1.3/silk/float/burg_modified_FLP.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /***********************************************************************
cannam@154 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
cannam@154 3 Redistribution and use in source and binary forms, with or without
cannam@154 4 modification, are permitted provided that the following conditions
cannam@154 5 are met:
cannam@154 6 - Redistributions of source code must retain the above copyright notice,
cannam@154 7 this list of conditions and the following disclaimer.
cannam@154 8 - Redistributions in binary form must reproduce the above copyright
cannam@154 9 notice, this list of conditions and the following disclaimer in the
cannam@154 10 documentation and/or other materials provided with the distribution.
cannam@154 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
cannam@154 12 names of specific contributors, may be used to endorse or promote
cannam@154 13 products derived from this software without specific prior written
cannam@154 14 permission.
cannam@154 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
cannam@154 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
cannam@154 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
cannam@154 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
cannam@154 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
cannam@154 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
cannam@154 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
cannam@154 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
cannam@154 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
cannam@154 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
cannam@154 25 POSSIBILITY OF SUCH DAMAGE.
cannam@154 26 ***********************************************************************/
cannam@154 27
cannam@154 28 #ifdef HAVE_CONFIG_H
cannam@154 29 #include "config.h"
cannam@154 30 #endif
cannam@154 31
cannam@154 32 #include "SigProc_FLP.h"
cannam@154 33 #include "tuning_parameters.h"
cannam@154 34 #include "define.h"
cannam@154 35
cannam@154 36 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
cannam@154 37
cannam@154 38 /* Compute reflection coefficients from input signal */
cannam@154 39 silk_float silk_burg_modified_FLP( /* O returns residual energy */
cannam@154 40 silk_float A[], /* O prediction coefficients (length order) */
cannam@154 41 const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */
cannam@154 42 const silk_float minInvGain, /* I minimum inverse prediction gain */
cannam@154 43 const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */
cannam@154 44 const opus_int nb_subfr, /* I number of subframes stacked in x */
cannam@154 45 const opus_int D /* I order */
cannam@154 46 )
cannam@154 47 {
cannam@154 48 opus_int k, n, s, reached_max_gain;
cannam@154 49 double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
cannam@154 50 const silk_float *x_ptr;
cannam@154 51 double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
cannam@154 52 double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
cannam@154 53 double Af[ SILK_MAX_ORDER_LPC ];
cannam@154 54
cannam@154 55 celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
cannam@154 56
cannam@154 57 /* Compute autocorrelations, added over subframes */
cannam@154 58 C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
cannam@154 59 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
cannam@154 60 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 61 x_ptr = x + s * subfr_length;
cannam@154 62 for( n = 1; n < D + 1; n++ ) {
cannam@154 63 C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
cannam@154 64 }
cannam@154 65 }
cannam@154 66 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
cannam@154 67
cannam@154 68 /* Initialize */
cannam@154 69 CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
cannam@154 70 invGain = 1.0f;
cannam@154 71 reached_max_gain = 0;
cannam@154 72 for( n = 0; n < D; n++ ) {
cannam@154 73 /* Update first row of correlation matrix (without first element) */
cannam@154 74 /* Update last row of correlation matrix (without last element, stored in reversed order) */
cannam@154 75 /* Update C * Af */
cannam@154 76 /* Update C * flipud(Af) (stored in reversed order) */
cannam@154 77 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 78 x_ptr = x + s * subfr_length;
cannam@154 79 tmp1 = x_ptr[ n ];
cannam@154 80 tmp2 = x_ptr[ subfr_length - n - 1 ];
cannam@154 81 for( k = 0; k < n; k++ ) {
cannam@154 82 C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
cannam@154 83 C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
cannam@154 84 Atmp = Af[ k ];
cannam@154 85 tmp1 += x_ptr[ n - k - 1 ] * Atmp;
cannam@154 86 tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
cannam@154 87 }
cannam@154 88 for( k = 0; k <= n; k++ ) {
cannam@154 89 CAf[ k ] -= tmp1 * x_ptr[ n - k ];
cannam@154 90 CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
cannam@154 91 }
cannam@154 92 }
cannam@154 93 tmp1 = C_first_row[ n ];
cannam@154 94 tmp2 = C_last_row[ n ];
cannam@154 95 for( k = 0; k < n; k++ ) {
cannam@154 96 Atmp = Af[ k ];
cannam@154 97 tmp1 += C_last_row[ n - k - 1 ] * Atmp;
cannam@154 98 tmp2 += C_first_row[ n - k - 1 ] * Atmp;
cannam@154 99 }
cannam@154 100 CAf[ n + 1 ] = tmp1;
cannam@154 101 CAb[ n + 1 ] = tmp2;
cannam@154 102
cannam@154 103 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
cannam@154 104 num = CAb[ n + 1 ];
cannam@154 105 nrg_b = CAb[ 0 ];
cannam@154 106 nrg_f = CAf[ 0 ];
cannam@154 107 for( k = 0; k < n; k++ ) {
cannam@154 108 Atmp = Af[ k ];
cannam@154 109 num += CAb[ n - k ] * Atmp;
cannam@154 110 nrg_b += CAb[ k + 1 ] * Atmp;
cannam@154 111 nrg_f += CAf[ k + 1 ] * Atmp;
cannam@154 112 }
cannam@154 113 silk_assert( nrg_f > 0.0 );
cannam@154 114 silk_assert( nrg_b > 0.0 );
cannam@154 115
cannam@154 116 /* Calculate the next order reflection (parcor) coefficient */
cannam@154 117 rc = -2.0 * num / ( nrg_f + nrg_b );
cannam@154 118 silk_assert( rc > -1.0 && rc < 1.0 );
cannam@154 119
cannam@154 120 /* Update inverse prediction gain */
cannam@154 121 tmp1 = invGain * ( 1.0 - rc * rc );
cannam@154 122 if( tmp1 <= minInvGain ) {
cannam@154 123 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
cannam@154 124 rc = sqrt( 1.0 - minInvGain / invGain );
cannam@154 125 if( num > 0 ) {
cannam@154 126 /* Ensure adjusted reflection coefficients has the original sign */
cannam@154 127 rc = -rc;
cannam@154 128 }
cannam@154 129 invGain = minInvGain;
cannam@154 130 reached_max_gain = 1;
cannam@154 131 } else {
cannam@154 132 invGain = tmp1;
cannam@154 133 }
cannam@154 134
cannam@154 135 /* Update the AR coefficients */
cannam@154 136 for( k = 0; k < (n + 1) >> 1; k++ ) {
cannam@154 137 tmp1 = Af[ k ];
cannam@154 138 tmp2 = Af[ n - k - 1 ];
cannam@154 139 Af[ k ] = tmp1 + rc * tmp2;
cannam@154 140 Af[ n - k - 1 ] = tmp2 + rc * tmp1;
cannam@154 141 }
cannam@154 142 Af[ n ] = rc;
cannam@154 143
cannam@154 144 if( reached_max_gain ) {
cannam@154 145 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
cannam@154 146 for( k = n + 1; k < D; k++ ) {
cannam@154 147 Af[ k ] = 0.0;
cannam@154 148 }
cannam@154 149 break;
cannam@154 150 }
cannam@154 151
cannam@154 152 /* Update C * Af and C * Ab */
cannam@154 153 for( k = 0; k <= n + 1; k++ ) {
cannam@154 154 tmp1 = CAf[ k ];
cannam@154 155 CAf[ k ] += rc * CAb[ n - k + 1 ];
cannam@154 156 CAb[ n - k + 1 ] += rc * tmp1;
cannam@154 157 }
cannam@154 158 }
cannam@154 159
cannam@154 160 if( reached_max_gain ) {
cannam@154 161 /* Convert to silk_float */
cannam@154 162 for( k = 0; k < D; k++ ) {
cannam@154 163 A[ k ] = (silk_float)( -Af[ k ] );
cannam@154 164 }
cannam@154 165 /* Subtract energy of preceding samples from C0 */
cannam@154 166 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 167 C0 -= silk_energy_FLP( x + s * subfr_length, D );
cannam@154 168 }
cannam@154 169 /* Approximate residual energy */
cannam@154 170 nrg_f = C0 * invGain;
cannam@154 171 } else {
cannam@154 172 /* Compute residual energy and store coefficients as silk_float */
cannam@154 173 nrg_f = CAf[ 0 ];
cannam@154 174 tmp1 = 1.0;
cannam@154 175 for( k = 0; k < D; k++ ) {
cannam@154 176 Atmp = Af[ k ];
cannam@154 177 nrg_f += CAf[ k + 1 ] * Atmp;
cannam@154 178 tmp1 += Atmp * Atmp;
cannam@154 179 A[ k ] = (silk_float)(-Atmp);
cannam@154 180 }
cannam@154 181 nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
cannam@154 182 }
cannam@154 183
cannam@154 184 /* Return residual energy */
cannam@154 185 return (silk_float)nrg_f;
cannam@154 186 }