annotate src/opus-1.3/silk/fixed/x86/burg_modified_FIX_sse4_1.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /* Copyright (c) 2014, Cisco Systems, INC
cannam@154 2 Written by XiangMingZhu WeiZhou MinPeng YanWang
cannam@154 3
cannam@154 4 Redistribution and use in source and binary forms, with or without
cannam@154 5 modification, are permitted provided that the following conditions
cannam@154 6 are met:
cannam@154 7
cannam@154 8 - Redistributions of source code must retain the above copyright
cannam@154 9 notice, this list of conditions and the following disclaimer.
cannam@154 10
cannam@154 11 - Redistributions in binary form must reproduce the above copyright
cannam@154 12 notice, this list of conditions and the following disclaimer in the
cannam@154 13 documentation and/or other materials provided with the distribution.
cannam@154 14
cannam@154 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
cannam@154 16 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
cannam@154 17 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
cannam@154 18 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
cannam@154 19 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
cannam@154 20 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
cannam@154 21 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
cannam@154 22 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
cannam@154 23 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
cannam@154 24 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
cannam@154 25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cannam@154 26 */
cannam@154 27
cannam@154 28 #ifdef HAVE_CONFIG_H
cannam@154 29 #include "config.h"
cannam@154 30 #endif
cannam@154 31
cannam@154 32 #include <xmmintrin.h>
cannam@154 33 #include <emmintrin.h>
cannam@154 34 #include <smmintrin.h>
cannam@154 35
cannam@154 36 #include "SigProc_FIX.h"
cannam@154 37 #include "define.h"
cannam@154 38 #include "tuning_parameters.h"
cannam@154 39 #include "pitch.h"
cannam@154 40 #include "celt/x86/x86cpu.h"
cannam@154 41
cannam@154 42 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
cannam@154 43
cannam@154 44 #define QA 25
cannam@154 45 #define N_BITS_HEAD_ROOM 2
cannam@154 46 #define MIN_RSHIFTS -16
cannam@154 47 #define MAX_RSHIFTS (32 - QA)
cannam@154 48
cannam@154 49 /* Compute reflection coefficients from input signal */
cannam@154 50 void silk_burg_modified_sse4_1(
cannam@154 51 opus_int32 *res_nrg, /* O Residual energy */
cannam@154 52 opus_int *res_nrg_Q, /* O Residual energy Q value */
cannam@154 53 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
cannam@154 54 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
cannam@154 55 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
cannam@154 56 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
cannam@154 57 const opus_int nb_subfr, /* I Number of subframes stacked in x */
cannam@154 58 const opus_int D, /* I Order */
cannam@154 59 int arch /* I Run-time architecture */
cannam@154 60 )
cannam@154 61 {
cannam@154 62 opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
cannam@154 63 opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
cannam@154 64 const opus_int16 *x_ptr;
cannam@154 65 opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
cannam@154 66 opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
cannam@154 67 opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
cannam@154 68 opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
cannam@154 69 opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
cannam@154 70 opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
cannam@154 71
cannam@154 72 __m128i FIRST_3210, LAST_3210, ATMP_3210, TMP1_3210, TMP2_3210, T1_3210, T2_3210, PTR_3210, SUBFR_3210, X1_3210, X2_3210;
cannam@154 73 __m128i CONST1 = _mm_set1_epi32(1);
cannam@154 74
cannam@154 75 celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
cannam@154 76
cannam@154 77 /* Compute autocorrelations, added over subframes */
cannam@154 78 silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
cannam@154 79 if( rshifts > MAX_RSHIFTS ) {
cannam@154 80 C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
cannam@154 81 silk_assert( C0 > 0 );
cannam@154 82 rshifts = MAX_RSHIFTS;
cannam@154 83 } else {
cannam@154 84 lz = silk_CLZ32( C0 ) - 1;
cannam@154 85 rshifts_extra = N_BITS_HEAD_ROOM - lz;
cannam@154 86 if( rshifts_extra > 0 ) {
cannam@154 87 rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
cannam@154 88 C0 = silk_RSHIFT32( C0, rshifts_extra );
cannam@154 89 } else {
cannam@154 90 rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
cannam@154 91 C0 = silk_LSHIFT32( C0, -rshifts_extra );
cannam@154 92 }
cannam@154 93 rshifts += rshifts_extra;
cannam@154 94 }
cannam@154 95 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
cannam@154 96 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
cannam@154 97 if( rshifts > 0 ) {
cannam@154 98 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 99 x_ptr = x + s * subfr_length;
cannam@154 100 for( n = 1; n < D + 1; n++ ) {
cannam@154 101 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
cannam@154 102 silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
cannam@154 103 }
cannam@154 104 }
cannam@154 105 } else {
cannam@154 106 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 107 int i;
cannam@154 108 opus_int32 d;
cannam@154 109 x_ptr = x + s * subfr_length;
cannam@154 110 celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
cannam@154 111 for( n = 1; n < D + 1; n++ ) {
cannam@154 112 for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
cannam@154 113 d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
cannam@154 114 xcorr[ n - 1 ] += d;
cannam@154 115 }
cannam@154 116 for( n = 1; n < D + 1; n++ ) {
cannam@154 117 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
cannam@154 118 }
cannam@154 119 }
cannam@154 120 }
cannam@154 121 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
cannam@154 122
cannam@154 123 /* Initialize */
cannam@154 124 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
cannam@154 125
cannam@154 126 invGain_Q30 = (opus_int32)1 << 30;
cannam@154 127 reached_max_gain = 0;
cannam@154 128 for( n = 0; n < D; n++ ) {
cannam@154 129 /* Update first row of correlation matrix (without first element) */
cannam@154 130 /* Update last row of correlation matrix (without last element, stored in reversed order) */
cannam@154 131 /* Update C * Af */
cannam@154 132 /* Update C * flipud(Af) (stored in reversed order) */
cannam@154 133 if( rshifts > -2 ) {
cannam@154 134 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 135 x_ptr = x + s * subfr_length;
cannam@154 136 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
cannam@154 137 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
cannam@154 138 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
cannam@154 139 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
cannam@154 140 for( k = 0; k < n; k++ ) {
cannam@154 141 C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
cannam@154 142 C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
cannam@154 143 Atmp_QA = Af_QA[ k ];
cannam@154 144 tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
cannam@154 145 tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
cannam@154 146 }
cannam@154 147 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
cannam@154 148 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
cannam@154 149 for( k = 0; k <= n; k++ ) {
cannam@154 150 CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
cannam@154 151 CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
cannam@154 152 }
cannam@154 153 }
cannam@154 154 } else {
cannam@154 155 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 156 x_ptr = x + s * subfr_length;
cannam@154 157 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
cannam@154 158 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
cannam@154 159 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
cannam@154 160 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
cannam@154 161
cannam@154 162 X1_3210 = _mm_set1_epi32( x1 );
cannam@154 163 X2_3210 = _mm_set1_epi32( x2 );
cannam@154 164 TMP1_3210 = _mm_setzero_si128();
cannam@154 165 TMP2_3210 = _mm_setzero_si128();
cannam@154 166 for( k = 0; k < n - 3; k += 4 ) {
cannam@154 167 PTR_3210 = OP_CVTEPI16_EPI32_M64( &x_ptr[ n - k - 1 - 3 ] );
cannam@154 168 SUBFR_3210 = OP_CVTEPI16_EPI32_M64( &x_ptr[ subfr_length - n + k ] );
cannam@154 169 FIRST_3210 = _mm_loadu_si128( (__m128i *)&C_first_row[ k ] );
cannam@154 170 PTR_3210 = _mm_shuffle_epi32( PTR_3210, _MM_SHUFFLE( 0, 1, 2, 3 ) );
cannam@154 171 LAST_3210 = _mm_loadu_si128( (__m128i *)&C_last_row[ k ] );
cannam@154 172 ATMP_3210 = _mm_loadu_si128( (__m128i *)&Af_QA[ k ] );
cannam@154 173
cannam@154 174 T1_3210 = _mm_mullo_epi32( PTR_3210, X1_3210 );
cannam@154 175 T2_3210 = _mm_mullo_epi32( SUBFR_3210, X2_3210 );
cannam@154 176
cannam@154 177 ATMP_3210 = _mm_srai_epi32( ATMP_3210, 7 );
cannam@154 178 ATMP_3210 = _mm_add_epi32( ATMP_3210, CONST1 );
cannam@154 179 ATMP_3210 = _mm_srai_epi32( ATMP_3210, 1 );
cannam@154 180
cannam@154 181 FIRST_3210 = _mm_add_epi32( FIRST_3210, T1_3210 );
cannam@154 182 LAST_3210 = _mm_add_epi32( LAST_3210, T2_3210 );
cannam@154 183
cannam@154 184 PTR_3210 = _mm_mullo_epi32( ATMP_3210, PTR_3210 );
cannam@154 185 SUBFR_3210 = _mm_mullo_epi32( ATMP_3210, SUBFR_3210 );
cannam@154 186
cannam@154 187 _mm_storeu_si128( (__m128i *)&C_first_row[ k ], FIRST_3210 );
cannam@154 188 _mm_storeu_si128( (__m128i *)&C_last_row[ k ], LAST_3210 );
cannam@154 189
cannam@154 190 TMP1_3210 = _mm_add_epi32( TMP1_3210, PTR_3210 );
cannam@154 191 TMP2_3210 = _mm_add_epi32( TMP2_3210, SUBFR_3210 );
cannam@154 192 }
cannam@154 193
cannam@154 194 TMP1_3210 = _mm_add_epi32( TMP1_3210, _mm_unpackhi_epi64(TMP1_3210, TMP1_3210 ) );
cannam@154 195 TMP2_3210 = _mm_add_epi32( TMP2_3210, _mm_unpackhi_epi64(TMP2_3210, TMP2_3210 ) );
cannam@154 196 TMP1_3210 = _mm_add_epi32( TMP1_3210, _mm_shufflelo_epi16(TMP1_3210, 0x0E ) );
cannam@154 197 TMP2_3210 = _mm_add_epi32( TMP2_3210, _mm_shufflelo_epi16(TMP2_3210, 0x0E ) );
cannam@154 198
cannam@154 199 tmp1 += _mm_cvtsi128_si32( TMP1_3210 );
cannam@154 200 tmp2 += _mm_cvtsi128_si32( TMP2_3210 );
cannam@154 201
cannam@154 202 for( ; k < n; k++ ) {
cannam@154 203 C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
cannam@154 204 C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
cannam@154 205 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
cannam@154 206 tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
cannam@154 207 tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
cannam@154 208 }
cannam@154 209
cannam@154 210 tmp1 = -tmp1; /* Q17 */
cannam@154 211 tmp2 = -tmp2; /* Q17 */
cannam@154 212
cannam@154 213 {
cannam@154 214 __m128i xmm_tmp1, xmm_tmp2;
cannam@154 215 __m128i xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1;
cannam@154 216 __m128i xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1;
cannam@154 217
cannam@154 218 xmm_tmp1 = _mm_set1_epi32( tmp1 );
cannam@154 219 xmm_tmp2 = _mm_set1_epi32( tmp2 );
cannam@154 220
cannam@154 221 for( k = 0; k <= n - 3; k += 4 ) {
cannam@154 222 xmm_x_ptr_n_k_x2x0 = OP_CVTEPI16_EPI32_M64( &x_ptr[ n - k - 3 ] );
cannam@154 223 xmm_x_ptr_sub_x2x0 = OP_CVTEPI16_EPI32_M64( &x_ptr[ subfr_length - n + k - 1 ] );
cannam@154 224
cannam@154 225 xmm_x_ptr_n_k_x2x0 = _mm_shuffle_epi32( xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE( 0, 1, 2, 3 ) );
cannam@154 226
cannam@154 227 xmm_x_ptr_n_k_x2x0 = _mm_slli_epi32( xmm_x_ptr_n_k_x2x0, -rshifts - 1 );
cannam@154 228 xmm_x_ptr_sub_x2x0 = _mm_slli_epi32( xmm_x_ptr_sub_x2x0, -rshifts - 1 );
cannam@154 229
cannam@154 230 /* equal shift right 4 bytes, xmm_x_ptr_n_k_x3x1 = _mm_srli_si128(xmm_x_ptr_n_k_x2x0, 4)*/
cannam@154 231 xmm_x_ptr_n_k_x3x1 = _mm_shuffle_epi32( xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
cannam@154 232 xmm_x_ptr_sub_x3x1 = _mm_shuffle_epi32( xmm_x_ptr_sub_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
cannam@154 233
cannam@154 234 xmm_x_ptr_n_k_x2x0 = _mm_mul_epi32( xmm_x_ptr_n_k_x2x0, xmm_tmp1 );
cannam@154 235 xmm_x_ptr_n_k_x3x1 = _mm_mul_epi32( xmm_x_ptr_n_k_x3x1, xmm_tmp1 );
cannam@154 236 xmm_x_ptr_sub_x2x0 = _mm_mul_epi32( xmm_x_ptr_sub_x2x0, xmm_tmp2 );
cannam@154 237 xmm_x_ptr_sub_x3x1 = _mm_mul_epi32( xmm_x_ptr_sub_x3x1, xmm_tmp2 );
cannam@154 238
cannam@154 239 xmm_x_ptr_n_k_x2x0 = _mm_srli_epi64( xmm_x_ptr_n_k_x2x0, 16 );
cannam@154 240 xmm_x_ptr_n_k_x3x1 = _mm_slli_epi64( xmm_x_ptr_n_k_x3x1, 16 );
cannam@154 241 xmm_x_ptr_sub_x2x0 = _mm_srli_epi64( xmm_x_ptr_sub_x2x0, 16 );
cannam@154 242 xmm_x_ptr_sub_x3x1 = _mm_slli_epi64( xmm_x_ptr_sub_x3x1, 16 );
cannam@154 243
cannam@154 244 xmm_x_ptr_n_k_x2x0 = _mm_blend_epi16( xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1, 0xCC );
cannam@154 245 xmm_x_ptr_sub_x2x0 = _mm_blend_epi16( xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1, 0xCC );
cannam@154 246
cannam@154 247 X1_3210 = _mm_loadu_si128( (__m128i *)&CAf[ k ] );
cannam@154 248 PTR_3210 = _mm_loadu_si128( (__m128i *)&CAb[ k ] );
cannam@154 249
cannam@154 250 X1_3210 = _mm_add_epi32( X1_3210, xmm_x_ptr_n_k_x2x0 );
cannam@154 251 PTR_3210 = _mm_add_epi32( PTR_3210, xmm_x_ptr_sub_x2x0 );
cannam@154 252
cannam@154 253 _mm_storeu_si128( (__m128i *)&CAf[ k ], X1_3210 );
cannam@154 254 _mm_storeu_si128( (__m128i *)&CAb[ k ], PTR_3210 );
cannam@154 255 }
cannam@154 256
cannam@154 257 for( ; k <= n; k++ ) {
cannam@154 258 CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
cannam@154 259 silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
cannam@154 260 CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
cannam@154 261 silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
cannam@154 262 }
cannam@154 263 }
cannam@154 264 }
cannam@154 265 }
cannam@154 266
cannam@154 267 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
cannam@154 268 tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
cannam@154 269 tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
cannam@154 270 num = 0; /* Q( -rshifts ) */
cannam@154 271 nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
cannam@154 272 for( k = 0; k < n; k++ ) {
cannam@154 273 Atmp_QA = Af_QA[ k ];
cannam@154 274 lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
cannam@154 275 lz = silk_min( 32 - QA, lz );
cannam@154 276 Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
cannam@154 277
cannam@154 278 tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
cannam@154 279 tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
cannam@154 280 num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
cannam@154 281 nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
cannam@154 282 Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
cannam@154 283 }
cannam@154 284 CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
cannam@154 285 CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
cannam@154 286 num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
cannam@154 287 num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
cannam@154 288
cannam@154 289 /* Calculate the next order reflection (parcor) coefficient */
cannam@154 290 if( silk_abs( num ) < nrg ) {
cannam@154 291 rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
cannam@154 292 } else {
cannam@154 293 rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
cannam@154 294 }
cannam@154 295
cannam@154 296 /* Update inverse prediction gain */
cannam@154 297 tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
cannam@154 298 tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
cannam@154 299 if( tmp1 <= minInvGain_Q30 ) {
cannam@154 300 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
cannam@154 301 tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
cannam@154 302 rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
cannam@154 303 if( rc_Q31 > 0 ) {
cannam@154 304 /* Newton-Raphson iteration */
cannam@154 305 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
cannam@154 306 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
cannam@154 307 if( num < 0 ) {
cannam@154 308 /* Ensure adjusted reflection coefficients has the original sign */
cannam@154 309 rc_Q31 = -rc_Q31;
cannam@154 310 }
cannam@154 311 }
cannam@154 312 invGain_Q30 = minInvGain_Q30;
cannam@154 313 reached_max_gain = 1;
cannam@154 314 } else {
cannam@154 315 invGain_Q30 = tmp1;
cannam@154 316 }
cannam@154 317
cannam@154 318 /* Update the AR coefficients */
cannam@154 319 for( k = 0; k < (n + 1) >> 1; k++ ) {
cannam@154 320 tmp1 = Af_QA[ k ]; /* QA */
cannam@154 321 tmp2 = Af_QA[ n - k - 1 ]; /* QA */
cannam@154 322 Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
cannam@154 323 Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
cannam@154 324 }
cannam@154 325 Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
cannam@154 326
cannam@154 327 if( reached_max_gain ) {
cannam@154 328 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
cannam@154 329 for( k = n + 1; k < D; k++ ) {
cannam@154 330 Af_QA[ k ] = 0;
cannam@154 331 }
cannam@154 332 break;
cannam@154 333 }
cannam@154 334
cannam@154 335 /* Update C * Af and C * Ab */
cannam@154 336 for( k = 0; k <= n + 1; k++ ) {
cannam@154 337 tmp1 = CAf[ k ]; /* Q( -rshifts ) */
cannam@154 338 tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
cannam@154 339 CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
cannam@154 340 CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
cannam@154 341 }
cannam@154 342 }
cannam@154 343
cannam@154 344 if( reached_max_gain ) {
cannam@154 345 for( k = 0; k < D; k++ ) {
cannam@154 346 /* Scale coefficients */
cannam@154 347 A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
cannam@154 348 }
cannam@154 349 /* Subtract energy of preceding samples from C0 */
cannam@154 350 if( rshifts > 0 ) {
cannam@154 351 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 352 x_ptr = x + s * subfr_length;
cannam@154 353 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
cannam@154 354 }
cannam@154 355 } else {
cannam@154 356 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 357 x_ptr = x + s * subfr_length;
cannam@154 358 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch ), -rshifts );
cannam@154 359 }
cannam@154 360 }
cannam@154 361 /* Approximate residual energy */
cannam@154 362 *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
cannam@154 363 *res_nrg_Q = -rshifts;
cannam@154 364 } else {
cannam@154 365 /* Return residual energy */
cannam@154 366 nrg = CAf[ 0 ]; /* Q( -rshifts ) */
cannam@154 367 tmp1 = (opus_int32)1 << 16; /* Q16 */
cannam@154 368 for( k = 0; k < D; k++ ) {
cannam@154 369 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
cannam@154 370 nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
cannam@154 371 tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
cannam@154 372 A_Q16[ k ] = -Atmp1;
cannam@154 373 }
cannam@154 374 *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
cannam@154 375 *res_nrg_Q = -rshifts;
cannam@154 376 }
cannam@154 377 }