cannam@154
|
1 /* Copyright (c) 2014, Cisco Systems, INC
|
cannam@154
|
2 Written by XiangMingZhu WeiZhou MinPeng YanWang
|
cannam@154
|
3
|
cannam@154
|
4 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
5 modification, are permitted provided that the following conditions
|
cannam@154
|
6 are met:
|
cannam@154
|
7
|
cannam@154
|
8 - Redistributions of source code must retain the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer.
|
cannam@154
|
10
|
cannam@154
|
11 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
12 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
13 documentation and/or other materials provided with the distribution.
|
cannam@154
|
14
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
cannam@154
|
16 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
cannam@154
|
17 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
cannam@154
|
18 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
cannam@154
|
19 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
cannam@154
|
20 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
cannam@154
|
21 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
cannam@154
|
22 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
cannam@154
|
23 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
cannam@154
|
24 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
cannam@154
|
25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 */
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include <xmmintrin.h>
|
cannam@154
|
33 #include <emmintrin.h>
|
cannam@154
|
34 #include <smmintrin.h>
|
cannam@154
|
35
|
cannam@154
|
36 #include "SigProc_FIX.h"
|
cannam@154
|
37 #include "define.h"
|
cannam@154
|
38 #include "tuning_parameters.h"
|
cannam@154
|
39 #include "pitch.h"
|
cannam@154
|
40 #include "celt/x86/x86cpu.h"
|
cannam@154
|
41
|
cannam@154
|
42 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
|
cannam@154
|
43
|
cannam@154
|
44 #define QA 25
|
cannam@154
|
45 #define N_BITS_HEAD_ROOM 2
|
cannam@154
|
46 #define MIN_RSHIFTS -16
|
cannam@154
|
47 #define MAX_RSHIFTS (32 - QA)
|
cannam@154
|
48
|
cannam@154
|
49 /* Compute reflection coefficients from input signal */
|
cannam@154
|
50 void silk_burg_modified_sse4_1(
|
cannam@154
|
51 opus_int32 *res_nrg, /* O Residual energy */
|
cannam@154
|
52 opus_int *res_nrg_Q, /* O Residual energy Q value */
|
cannam@154
|
53 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
cannam@154
|
54 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
cannam@154
|
55 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
cannam@154
|
56 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
cannam@154
|
57 const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
cannam@154
|
58 const opus_int D, /* I Order */
|
cannam@154
|
59 int arch /* I Run-time architecture */
|
cannam@154
|
60 )
|
cannam@154
|
61 {
|
cannam@154
|
62 opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
|
cannam@154
|
63 opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
|
cannam@154
|
64 const opus_int16 *x_ptr;
|
cannam@154
|
65 opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
66 opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
67 opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
68 opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
|
cannam@154
|
69 opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
|
cannam@154
|
70 opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
71
|
cannam@154
|
72 __m128i FIRST_3210, LAST_3210, ATMP_3210, TMP1_3210, TMP2_3210, T1_3210, T2_3210, PTR_3210, SUBFR_3210, X1_3210, X2_3210;
|
cannam@154
|
73 __m128i CONST1 = _mm_set1_epi32(1);
|
cannam@154
|
74
|
cannam@154
|
75 celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
|
cannam@154
|
76
|
cannam@154
|
77 /* Compute autocorrelations, added over subframes */
|
cannam@154
|
78 silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
|
cannam@154
|
79 if( rshifts > MAX_RSHIFTS ) {
|
cannam@154
|
80 C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
|
cannam@154
|
81 silk_assert( C0 > 0 );
|
cannam@154
|
82 rshifts = MAX_RSHIFTS;
|
cannam@154
|
83 } else {
|
cannam@154
|
84 lz = silk_CLZ32( C0 ) - 1;
|
cannam@154
|
85 rshifts_extra = N_BITS_HEAD_ROOM - lz;
|
cannam@154
|
86 if( rshifts_extra > 0 ) {
|
cannam@154
|
87 rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
|
cannam@154
|
88 C0 = silk_RSHIFT32( C0, rshifts_extra );
|
cannam@154
|
89 } else {
|
cannam@154
|
90 rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
|
cannam@154
|
91 C0 = silk_LSHIFT32( C0, -rshifts_extra );
|
cannam@154
|
92 }
|
cannam@154
|
93 rshifts += rshifts_extra;
|
cannam@154
|
94 }
|
cannam@154
|
95 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
cannam@154
|
96 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
cannam@154
|
97 if( rshifts > 0 ) {
|
cannam@154
|
98 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
99 x_ptr = x + s * subfr_length;
|
cannam@154
|
100 for( n = 1; n < D + 1; n++ ) {
|
cannam@154
|
101 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
|
cannam@154
|
102 silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
|
cannam@154
|
103 }
|
cannam@154
|
104 }
|
cannam@154
|
105 } else {
|
cannam@154
|
106 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
107 int i;
|
cannam@154
|
108 opus_int32 d;
|
cannam@154
|
109 x_ptr = x + s * subfr_length;
|
cannam@154
|
110 celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
|
cannam@154
|
111 for( n = 1; n < D + 1; n++ ) {
|
cannam@154
|
112 for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
|
cannam@154
|
113 d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
|
cannam@154
|
114 xcorr[ n - 1 ] += d;
|
cannam@154
|
115 }
|
cannam@154
|
116 for( n = 1; n < D + 1; n++ ) {
|
cannam@154
|
117 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
|
cannam@154
|
118 }
|
cannam@154
|
119 }
|
cannam@154
|
120 }
|
cannam@154
|
121 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
cannam@154
|
122
|
cannam@154
|
123 /* Initialize */
|
cannam@154
|
124 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
cannam@154
|
125
|
cannam@154
|
126 invGain_Q30 = (opus_int32)1 << 30;
|
cannam@154
|
127 reached_max_gain = 0;
|
cannam@154
|
128 for( n = 0; n < D; n++ ) {
|
cannam@154
|
129 /* Update first row of correlation matrix (without first element) */
|
cannam@154
|
130 /* Update last row of correlation matrix (without last element, stored in reversed order) */
|
cannam@154
|
131 /* Update C * Af */
|
cannam@154
|
132 /* Update C * flipud(Af) (stored in reversed order) */
|
cannam@154
|
133 if( rshifts > -2 ) {
|
cannam@154
|
134 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
135 x_ptr = x + s * subfr_length;
|
cannam@154
|
136 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
137 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
138 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
|
cannam@154
|
139 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
|
cannam@154
|
140 for( k = 0; k < n; k++ ) {
|
cannam@154
|
141 C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
cannam@154
|
142 C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
cannam@154
|
143 Atmp_QA = Af_QA[ k ];
|
cannam@154
|
144 tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
|
cannam@154
|
145 tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
|
cannam@154
|
146 }
|
cannam@154
|
147 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
148 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
149 for( k = 0; k <= n; k++ ) {
|
cannam@154
|
150 CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
|
cannam@154
|
151 CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
|
cannam@154
|
152 }
|
cannam@154
|
153 }
|
cannam@154
|
154 } else {
|
cannam@154
|
155 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
156 x_ptr = x + s * subfr_length;
|
cannam@154
|
157 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
|
cannam@154
|
158 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
|
cannam@154
|
159 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
|
cannam@154
|
160 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
|
cannam@154
|
161
|
cannam@154
|
162 X1_3210 = _mm_set1_epi32( x1 );
|
cannam@154
|
163 X2_3210 = _mm_set1_epi32( x2 );
|
cannam@154
|
164 TMP1_3210 = _mm_setzero_si128();
|
cannam@154
|
165 TMP2_3210 = _mm_setzero_si128();
|
cannam@154
|
166 for( k = 0; k < n - 3; k += 4 ) {
|
cannam@154
|
167 PTR_3210 = OP_CVTEPI16_EPI32_M64( &x_ptr[ n - k - 1 - 3 ] );
|
cannam@154
|
168 SUBFR_3210 = OP_CVTEPI16_EPI32_M64( &x_ptr[ subfr_length - n + k ] );
|
cannam@154
|
169 FIRST_3210 = _mm_loadu_si128( (__m128i *)&C_first_row[ k ] );
|
cannam@154
|
170 PTR_3210 = _mm_shuffle_epi32( PTR_3210, _MM_SHUFFLE( 0, 1, 2, 3 ) );
|
cannam@154
|
171 LAST_3210 = _mm_loadu_si128( (__m128i *)&C_last_row[ k ] );
|
cannam@154
|
172 ATMP_3210 = _mm_loadu_si128( (__m128i *)&Af_QA[ k ] );
|
cannam@154
|
173
|
cannam@154
|
174 T1_3210 = _mm_mullo_epi32( PTR_3210, X1_3210 );
|
cannam@154
|
175 T2_3210 = _mm_mullo_epi32( SUBFR_3210, X2_3210 );
|
cannam@154
|
176
|
cannam@154
|
177 ATMP_3210 = _mm_srai_epi32( ATMP_3210, 7 );
|
cannam@154
|
178 ATMP_3210 = _mm_add_epi32( ATMP_3210, CONST1 );
|
cannam@154
|
179 ATMP_3210 = _mm_srai_epi32( ATMP_3210, 1 );
|
cannam@154
|
180
|
cannam@154
|
181 FIRST_3210 = _mm_add_epi32( FIRST_3210, T1_3210 );
|
cannam@154
|
182 LAST_3210 = _mm_add_epi32( LAST_3210, T2_3210 );
|
cannam@154
|
183
|
cannam@154
|
184 PTR_3210 = _mm_mullo_epi32( ATMP_3210, PTR_3210 );
|
cannam@154
|
185 SUBFR_3210 = _mm_mullo_epi32( ATMP_3210, SUBFR_3210 );
|
cannam@154
|
186
|
cannam@154
|
187 _mm_storeu_si128( (__m128i *)&C_first_row[ k ], FIRST_3210 );
|
cannam@154
|
188 _mm_storeu_si128( (__m128i *)&C_last_row[ k ], LAST_3210 );
|
cannam@154
|
189
|
cannam@154
|
190 TMP1_3210 = _mm_add_epi32( TMP1_3210, PTR_3210 );
|
cannam@154
|
191 TMP2_3210 = _mm_add_epi32( TMP2_3210, SUBFR_3210 );
|
cannam@154
|
192 }
|
cannam@154
|
193
|
cannam@154
|
194 TMP1_3210 = _mm_add_epi32( TMP1_3210, _mm_unpackhi_epi64(TMP1_3210, TMP1_3210 ) );
|
cannam@154
|
195 TMP2_3210 = _mm_add_epi32( TMP2_3210, _mm_unpackhi_epi64(TMP2_3210, TMP2_3210 ) );
|
cannam@154
|
196 TMP1_3210 = _mm_add_epi32( TMP1_3210, _mm_shufflelo_epi16(TMP1_3210, 0x0E ) );
|
cannam@154
|
197 TMP2_3210 = _mm_add_epi32( TMP2_3210, _mm_shufflelo_epi16(TMP2_3210, 0x0E ) );
|
cannam@154
|
198
|
cannam@154
|
199 tmp1 += _mm_cvtsi128_si32( TMP1_3210 );
|
cannam@154
|
200 tmp2 += _mm_cvtsi128_si32( TMP2_3210 );
|
cannam@154
|
201
|
cannam@154
|
202 for( ; k < n; k++ ) {
|
cannam@154
|
203 C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
cannam@154
|
204 C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
cannam@154
|
205 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
|
cannam@154
|
206 tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
|
cannam@154
|
207 tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
|
cannam@154
|
208 }
|
cannam@154
|
209
|
cannam@154
|
210 tmp1 = -tmp1; /* Q17 */
|
cannam@154
|
211 tmp2 = -tmp2; /* Q17 */
|
cannam@154
|
212
|
cannam@154
|
213 {
|
cannam@154
|
214 __m128i xmm_tmp1, xmm_tmp2;
|
cannam@154
|
215 __m128i xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1;
|
cannam@154
|
216 __m128i xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1;
|
cannam@154
|
217
|
cannam@154
|
218 xmm_tmp1 = _mm_set1_epi32( tmp1 );
|
cannam@154
|
219 xmm_tmp2 = _mm_set1_epi32( tmp2 );
|
cannam@154
|
220
|
cannam@154
|
221 for( k = 0; k <= n - 3; k += 4 ) {
|
cannam@154
|
222 xmm_x_ptr_n_k_x2x0 = OP_CVTEPI16_EPI32_M64( &x_ptr[ n - k - 3 ] );
|
cannam@154
|
223 xmm_x_ptr_sub_x2x0 = OP_CVTEPI16_EPI32_M64( &x_ptr[ subfr_length - n + k - 1 ] );
|
cannam@154
|
224
|
cannam@154
|
225 xmm_x_ptr_n_k_x2x0 = _mm_shuffle_epi32( xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE( 0, 1, 2, 3 ) );
|
cannam@154
|
226
|
cannam@154
|
227 xmm_x_ptr_n_k_x2x0 = _mm_slli_epi32( xmm_x_ptr_n_k_x2x0, -rshifts - 1 );
|
cannam@154
|
228 xmm_x_ptr_sub_x2x0 = _mm_slli_epi32( xmm_x_ptr_sub_x2x0, -rshifts - 1 );
|
cannam@154
|
229
|
cannam@154
|
230 /* equal shift right 4 bytes, xmm_x_ptr_n_k_x3x1 = _mm_srli_si128(xmm_x_ptr_n_k_x2x0, 4)*/
|
cannam@154
|
231 xmm_x_ptr_n_k_x3x1 = _mm_shuffle_epi32( xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
cannam@154
|
232 xmm_x_ptr_sub_x3x1 = _mm_shuffle_epi32( xmm_x_ptr_sub_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
cannam@154
|
233
|
cannam@154
|
234 xmm_x_ptr_n_k_x2x0 = _mm_mul_epi32( xmm_x_ptr_n_k_x2x0, xmm_tmp1 );
|
cannam@154
|
235 xmm_x_ptr_n_k_x3x1 = _mm_mul_epi32( xmm_x_ptr_n_k_x3x1, xmm_tmp1 );
|
cannam@154
|
236 xmm_x_ptr_sub_x2x0 = _mm_mul_epi32( xmm_x_ptr_sub_x2x0, xmm_tmp2 );
|
cannam@154
|
237 xmm_x_ptr_sub_x3x1 = _mm_mul_epi32( xmm_x_ptr_sub_x3x1, xmm_tmp2 );
|
cannam@154
|
238
|
cannam@154
|
239 xmm_x_ptr_n_k_x2x0 = _mm_srli_epi64( xmm_x_ptr_n_k_x2x0, 16 );
|
cannam@154
|
240 xmm_x_ptr_n_k_x3x1 = _mm_slli_epi64( xmm_x_ptr_n_k_x3x1, 16 );
|
cannam@154
|
241 xmm_x_ptr_sub_x2x0 = _mm_srli_epi64( xmm_x_ptr_sub_x2x0, 16 );
|
cannam@154
|
242 xmm_x_ptr_sub_x3x1 = _mm_slli_epi64( xmm_x_ptr_sub_x3x1, 16 );
|
cannam@154
|
243
|
cannam@154
|
244 xmm_x_ptr_n_k_x2x0 = _mm_blend_epi16( xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1, 0xCC );
|
cannam@154
|
245 xmm_x_ptr_sub_x2x0 = _mm_blend_epi16( xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1, 0xCC );
|
cannam@154
|
246
|
cannam@154
|
247 X1_3210 = _mm_loadu_si128( (__m128i *)&CAf[ k ] );
|
cannam@154
|
248 PTR_3210 = _mm_loadu_si128( (__m128i *)&CAb[ k ] );
|
cannam@154
|
249
|
cannam@154
|
250 X1_3210 = _mm_add_epi32( X1_3210, xmm_x_ptr_n_k_x2x0 );
|
cannam@154
|
251 PTR_3210 = _mm_add_epi32( PTR_3210, xmm_x_ptr_sub_x2x0 );
|
cannam@154
|
252
|
cannam@154
|
253 _mm_storeu_si128( (__m128i *)&CAf[ k ], X1_3210 );
|
cannam@154
|
254 _mm_storeu_si128( (__m128i *)&CAb[ k ], PTR_3210 );
|
cannam@154
|
255 }
|
cannam@154
|
256
|
cannam@154
|
257 for( ; k <= n; k++ ) {
|
cannam@154
|
258 CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
|
cannam@154
|
259 silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
cannam@154
|
260 CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
|
cannam@154
|
261 silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
cannam@154
|
262 }
|
cannam@154
|
263 }
|
cannam@154
|
264 }
|
cannam@154
|
265 }
|
cannam@154
|
266
|
cannam@154
|
267 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
|
cannam@154
|
268 tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
|
cannam@154
|
269 tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
|
cannam@154
|
270 num = 0; /* Q( -rshifts ) */
|
cannam@154
|
271 nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
|
cannam@154
|
272 for( k = 0; k < n; k++ ) {
|
cannam@154
|
273 Atmp_QA = Af_QA[ k ];
|
cannam@154
|
274 lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
|
cannam@154
|
275 lz = silk_min( 32 - QA, lz );
|
cannam@154
|
276 Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
|
cannam@154
|
277
|
cannam@154
|
278 tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
cannam@154
|
279 tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
cannam@154
|
280 num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
cannam@154
|
281 nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
|
cannam@154
|
282 Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
|
cannam@154
|
283 }
|
cannam@154
|
284 CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
|
cannam@154
|
285 CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
|
cannam@154
|
286 num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
|
cannam@154
|
287 num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
|
cannam@154
|
288
|
cannam@154
|
289 /* Calculate the next order reflection (parcor) coefficient */
|
cannam@154
|
290 if( silk_abs( num ) < nrg ) {
|
cannam@154
|
291 rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
|
cannam@154
|
292 } else {
|
cannam@154
|
293 rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
|
cannam@154
|
294 }
|
cannam@154
|
295
|
cannam@154
|
296 /* Update inverse prediction gain */
|
cannam@154
|
297 tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
|
cannam@154
|
298 tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
|
cannam@154
|
299 if( tmp1 <= minInvGain_Q30 ) {
|
cannam@154
|
300 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
|
cannam@154
|
301 tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
|
cannam@154
|
302 rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
|
cannam@154
|
303 if( rc_Q31 > 0 ) {
|
cannam@154
|
304 /* Newton-Raphson iteration */
|
cannam@154
|
305 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
|
cannam@154
|
306 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
|
cannam@154
|
307 if( num < 0 ) {
|
cannam@154
|
308 /* Ensure adjusted reflection coefficients has the original sign */
|
cannam@154
|
309 rc_Q31 = -rc_Q31;
|
cannam@154
|
310 }
|
cannam@154
|
311 }
|
cannam@154
|
312 invGain_Q30 = minInvGain_Q30;
|
cannam@154
|
313 reached_max_gain = 1;
|
cannam@154
|
314 } else {
|
cannam@154
|
315 invGain_Q30 = tmp1;
|
cannam@154
|
316 }
|
cannam@154
|
317
|
cannam@154
|
318 /* Update the AR coefficients */
|
cannam@154
|
319 for( k = 0; k < (n + 1) >> 1; k++ ) {
|
cannam@154
|
320 tmp1 = Af_QA[ k ]; /* QA */
|
cannam@154
|
321 tmp2 = Af_QA[ n - k - 1 ]; /* QA */
|
cannam@154
|
322 Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
|
cannam@154
|
323 Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
|
cannam@154
|
324 }
|
cannam@154
|
325 Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
|
cannam@154
|
326
|
cannam@154
|
327 if( reached_max_gain ) {
|
cannam@154
|
328 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
|
cannam@154
|
329 for( k = n + 1; k < D; k++ ) {
|
cannam@154
|
330 Af_QA[ k ] = 0;
|
cannam@154
|
331 }
|
cannam@154
|
332 break;
|
cannam@154
|
333 }
|
cannam@154
|
334
|
cannam@154
|
335 /* Update C * Af and C * Ab */
|
cannam@154
|
336 for( k = 0; k <= n + 1; k++ ) {
|
cannam@154
|
337 tmp1 = CAf[ k ]; /* Q( -rshifts ) */
|
cannam@154
|
338 tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
|
cannam@154
|
339 CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
cannam@154
|
340 CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
cannam@154
|
341 }
|
cannam@154
|
342 }
|
cannam@154
|
343
|
cannam@154
|
344 if( reached_max_gain ) {
|
cannam@154
|
345 for( k = 0; k < D; k++ ) {
|
cannam@154
|
346 /* Scale coefficients */
|
cannam@154
|
347 A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
|
cannam@154
|
348 }
|
cannam@154
|
349 /* Subtract energy of preceding samples from C0 */
|
cannam@154
|
350 if( rshifts > 0 ) {
|
cannam@154
|
351 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
352 x_ptr = x + s * subfr_length;
|
cannam@154
|
353 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
|
cannam@154
|
354 }
|
cannam@154
|
355 } else {
|
cannam@154
|
356 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
357 x_ptr = x + s * subfr_length;
|
cannam@154
|
358 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch ), -rshifts );
|
cannam@154
|
359 }
|
cannam@154
|
360 }
|
cannam@154
|
361 /* Approximate residual energy */
|
cannam@154
|
362 *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
|
cannam@154
|
363 *res_nrg_Q = -rshifts;
|
cannam@154
|
364 } else {
|
cannam@154
|
365 /* Return residual energy */
|
cannam@154
|
366 nrg = CAf[ 0 ]; /* Q( -rshifts ) */
|
cannam@154
|
367 tmp1 = (opus_int32)1 << 16; /* Q16 */
|
cannam@154
|
368 for( k = 0; k < D; k++ ) {
|
cannam@154
|
369 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
|
cannam@154
|
370 nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
|
cannam@154
|
371 tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
|
cannam@154
|
372 A_Q16[ k ] = -Atmp1;
|
cannam@154
|
373 }
|
cannam@154
|
374 *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
|
cannam@154
|
375 *res_nrg_Q = -rshifts;
|
cannam@154
|
376 }
|
cannam@154
|
377 }
|