cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28
|
cannam@154
|
29 /**************************************************************/
|
cannam@154
|
30 /* Compute noise shaping coefficients and initial gain values */
|
cannam@154
|
31 /**************************************************************/
|
cannam@154
|
32 #define OVERRIDE_silk_noise_shape_analysis_FIX
|
cannam@154
|
33
|
cannam@154
|
34 void silk_noise_shape_analysis_FIX(
|
cannam@154
|
35 silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */
|
cannam@154
|
36 silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */
|
cannam@154
|
37 const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */
|
cannam@154
|
38 const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */
|
cannam@154
|
39 int arch /* I Run-time architecture */
|
cannam@154
|
40 )
|
cannam@154
|
41 {
|
cannam@154
|
42 silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
|
cannam@154
|
43 opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
|
cannam@154
|
44 opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
|
cannam@154
|
45 opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
|
cannam@154
|
46 opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
|
cannam@154
|
47 opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
|
cannam@154
|
48 opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
|
cannam@154
|
49 opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ];
|
cannam@154
|
50 opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ];
|
cannam@154
|
51 VARDECL( opus_int16, x_windowed );
|
cannam@154
|
52 const opus_int16 *x_ptr, *pitch_res_ptr;
|
cannam@154
|
53 SAVE_STACK;
|
cannam@154
|
54
|
cannam@154
|
55 /* Point to start of first LPC analysis block */
|
cannam@154
|
56 x_ptr = x - psEnc->sCmn.la_shape;
|
cannam@154
|
57
|
cannam@154
|
58 /****************/
|
cannam@154
|
59 /* GAIN CONTROL */
|
cannam@154
|
60 /****************/
|
cannam@154
|
61 SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
|
cannam@154
|
62
|
cannam@154
|
63 /* Input quality is the average of the quality in the lowest two VAD bands */
|
cannam@154
|
64 psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
|
cannam@154
|
65 + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
|
cannam@154
|
66
|
cannam@154
|
67 /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
|
cannam@154
|
68 psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
|
cannam@154
|
69 SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
|
cannam@154
|
70
|
cannam@154
|
71 /* Reduce coding SNR during low speech activity */
|
cannam@154
|
72 if( psEnc->sCmn.useCBR == 0 ) {
|
cannam@154
|
73 b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
|
cannam@154
|
74 b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
|
cannam@154
|
75 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
|
cannam@154
|
76 silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/
|
cannam@154
|
77 silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/
|
cannam@154
|
78 }
|
cannam@154
|
79
|
cannam@154
|
80 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
81 /* Reduce gains for periodic signals */
|
cannam@154
|
82 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
|
cannam@154
|
83 } else {
|
cannam@154
|
84 /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
|
cannam@154
|
85 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
|
cannam@154
|
86 silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
|
cannam@154
|
87 SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
|
cannam@154
|
88 }
|
cannam@154
|
89
|
cannam@154
|
90 /*************************/
|
cannam@154
|
91 /* SPARSENESS PROCESSING */
|
cannam@154
|
92 /*************************/
|
cannam@154
|
93 /* Set quantizer offset */
|
cannam@154
|
94 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
95 /* Initially set to 0; may be overruled in process_gains(..) */
|
cannam@154
|
96 psEnc->sCmn.indices.quantOffsetType = 0;
|
cannam@154
|
97 psEncCtrl->sparseness_Q8 = 0;
|
cannam@154
|
98 } else {
|
cannam@154
|
99 /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
|
cannam@154
|
100 nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
|
cannam@154
|
101 energy_variation_Q7 = 0;
|
cannam@154
|
102 log_energy_prev_Q7 = 0;
|
cannam@154
|
103 pitch_res_ptr = pitch_res;
|
cannam@154
|
104 for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
|
cannam@154
|
105 silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
|
cannam@154
|
106 nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/
|
cannam@154
|
107
|
cannam@154
|
108 log_energy_Q7 = silk_lin2log( nrg );
|
cannam@154
|
109 if( k > 0 ) {
|
cannam@154
|
110 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
|
cannam@154
|
111 }
|
cannam@154
|
112 log_energy_prev_Q7 = log_energy_Q7;
|
cannam@154
|
113 pitch_res_ptr += nSamples;
|
cannam@154
|
114 }
|
cannam@154
|
115
|
cannam@154
|
116 psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
|
cannam@154
|
117 SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
|
cannam@154
|
118
|
cannam@154
|
119 /* Set quantization offset depending on sparseness measure */
|
cannam@154
|
120 if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
|
cannam@154
|
121 psEnc->sCmn.indices.quantOffsetType = 0;
|
cannam@154
|
122 } else {
|
cannam@154
|
123 psEnc->sCmn.indices.quantOffsetType = 1;
|
cannam@154
|
124 }
|
cannam@154
|
125
|
cannam@154
|
126 /* Increase coding SNR for sparse signals */
|
cannam@154
|
127 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
|
cannam@154
|
128 }
|
cannam@154
|
129
|
cannam@154
|
130 /*******************************/
|
cannam@154
|
131 /* Control bandwidth expansion */
|
cannam@154
|
132 /*******************************/
|
cannam@154
|
133 /* More BWE for signals with high prediction gain */
|
cannam@154
|
134 strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
|
cannam@154
|
135 BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
|
cannam@154
|
136 silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
|
cannam@154
|
137 delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
|
cannam@154
|
138 SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
|
cannam@154
|
139 BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
|
cannam@154
|
140 BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
|
cannam@154
|
141 /* BWExp1 will be applied after BWExp2, so make it relative */
|
cannam@154
|
142 BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
|
cannam@154
|
143
|
cannam@154
|
144 if( psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
145 /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
|
cannam@154
|
146 warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
|
cannam@154
|
147 } else {
|
cannam@154
|
148 warping_Q16 = 0;
|
cannam@154
|
149 }
|
cannam@154
|
150
|
cannam@154
|
151 /********************************************/
|
cannam@154
|
152 /* Compute noise shaping AR coefs and gains */
|
cannam@154
|
153 /********************************************/
|
cannam@154
|
154 ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
|
cannam@154
|
155 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
156 /* Apply window: sine slope followed by flat part followed by cosine slope */
|
cannam@154
|
157 opus_int shift, slope_part, flat_part;
|
cannam@154
|
158 flat_part = psEnc->sCmn.fs_kHz * 3;
|
cannam@154
|
159 slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
|
cannam@154
|
160
|
cannam@154
|
161 silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
|
cannam@154
|
162 shift = slope_part;
|
cannam@154
|
163 silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
|
cannam@154
|
164 shift += flat_part;
|
cannam@154
|
165 silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
|
cannam@154
|
166
|
cannam@154
|
167 /* Update pointer: next LPC analysis block */
|
cannam@154
|
168 x_ptr += psEnc->sCmn.subfr_length;
|
cannam@154
|
169
|
cannam@154
|
170 if( psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
171 /* Calculate warped auto correlation */
|
cannam@154
|
172 silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch );
|
cannam@154
|
173 } else {
|
cannam@154
|
174 /* Calculate regular auto correlation */
|
cannam@154
|
175 silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
|
cannam@154
|
176 }
|
cannam@154
|
177
|
cannam@154
|
178 /* Add white noise, as a fraction of energy */
|
cannam@154
|
179 auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
|
cannam@154
|
180 SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
|
cannam@154
|
181
|
cannam@154
|
182 /* Calculate the reflection coefficients using schur */
|
cannam@154
|
183 nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
184 silk_assert( nrg >= 0 );
|
cannam@154
|
185
|
cannam@154
|
186 /* Convert reflection coefficients to prediction coefficients */
|
cannam@154
|
187 silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
188
|
cannam@154
|
189 Qnrg = -scale; /* range: -12...30*/
|
cannam@154
|
190 silk_assert( Qnrg >= -12 );
|
cannam@154
|
191 silk_assert( Qnrg <= 30 );
|
cannam@154
|
192
|
cannam@154
|
193 /* Make sure that Qnrg is an even number */
|
cannam@154
|
194 if( Qnrg & 1 ) {
|
cannam@154
|
195 Qnrg -= 1;
|
cannam@154
|
196 nrg >>= 1;
|
cannam@154
|
197 }
|
cannam@154
|
198
|
cannam@154
|
199 tmp32 = silk_SQRT_APPROX( nrg );
|
cannam@154
|
200 Qnrg >>= 1; /* range: -6...15*/
|
cannam@154
|
201
|
cannam@154
|
202 psEncCtrl->Gains_Q16[ k ] = (silk_LSHIFT32( silk_LIMIT( (tmp32), silk_RSHIFT32( silk_int32_MIN, (16 - Qnrg) ), \
|
cannam@154
|
203 silk_RSHIFT32( silk_int32_MAX, (16 - Qnrg) ) ), (16 - Qnrg) ));
|
cannam@154
|
204
|
cannam@154
|
205 if( psEnc->sCmn.warping_Q16 > 0 ) {
|
cannam@154
|
206 /* Adjust gain for warping */
|
cannam@154
|
207 gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
208 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
|
cannam@154
|
209 if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) {
|
cannam@154
|
210 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
|
cannam@154
|
211 } else {
|
cannam@154
|
212 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
|
cannam@154
|
213 }
|
cannam@154
|
214 }
|
cannam@154
|
215
|
cannam@154
|
216 /* Bandwidth expansion for synthesis filter shaping */
|
cannam@154
|
217 silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
|
cannam@154
|
218
|
cannam@154
|
219 /* Compute noise shaping filter coefficients */
|
cannam@154
|
220 silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
|
cannam@154
|
221
|
cannam@154
|
222 /* Bandwidth expansion for analysis filter shaping */
|
cannam@154
|
223 silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
|
cannam@154
|
224 silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
|
cannam@154
|
225
|
cannam@154
|
226 /* Ratio of prediction gains, in energy domain */
|
cannam@154
|
227 pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder, arch );
|
cannam@154
|
228 nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder, arch );
|
cannam@154
|
229
|
cannam@154
|
230 /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
|
cannam@154
|
231 pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
|
cannam@154
|
232 psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
|
cannam@154
|
233
|
cannam@154
|
234 /* Convert to monic warped prediction coefficients and limit absolute values */
|
cannam@154
|
235 limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
|
cannam@154
|
236
|
cannam@154
|
237 /* Convert from Q24 to Q13 and store in int16 */
|
cannam@154
|
238 for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
|
cannam@154
|
239 psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
|
cannam@154
|
240 psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
|
cannam@154
|
241 }
|
cannam@154
|
242 }
|
cannam@154
|
243
|
cannam@154
|
244 /*****************/
|
cannam@154
|
245 /* Gain tweaking */
|
cannam@154
|
246 /*****************/
|
cannam@154
|
247 /* Increase gains during low speech activity and put lower limit on gains */
|
cannam@154
|
248 gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
|
cannam@154
|
249 gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
|
cannam@154
|
250 silk_assert( gain_mult_Q16 > 0 );
|
cannam@154
|
251 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
252 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
|
cannam@154
|
253 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
|
cannam@154
|
254 psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
|
cannam@154
|
255 }
|
cannam@154
|
256
|
cannam@154
|
257 gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
|
cannam@154
|
258 psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
|
cannam@154
|
259 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
260 psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
|
cannam@154
|
261 }
|
cannam@154
|
262
|
cannam@154
|
263 /************************************************/
|
cannam@154
|
264 /* Control low-frequency shaping and noise tilt */
|
cannam@154
|
265 /************************************************/
|
cannam@154
|
266 /* Less low frequency shaping for noisy inputs */
|
cannam@154
|
267 strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
|
cannam@154
|
268 SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
|
cannam@154
|
269 strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
|
cannam@154
|
270 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
271 /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
|
cannam@154
|
272 /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
|
cannam@154
|
273 opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
|
cannam@154
|
274 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
275 b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
|
cannam@154
|
276 /* Pack two coefficients in one int32 */
|
cannam@154
|
277 psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
|
cannam@154
|
278 psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
|
cannam@154
|
279 }
|
cannam@154
|
280 silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
|
cannam@154
|
281 Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
|
cannam@154
|
282 silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
|
cannam@154
|
283 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
|
cannam@154
|
284 } else {
|
cannam@154
|
285 b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
|
cannam@154
|
286 /* Pack two coefficients in one int32 */
|
cannam@154
|
287 psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
|
cannam@154
|
288 silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
|
cannam@154
|
289 psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
|
cannam@154
|
290 for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
|
cannam@154
|
291 psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
|
cannam@154
|
292 }
|
cannam@154
|
293 Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
|
cannam@154
|
294 }
|
cannam@154
|
295
|
cannam@154
|
296 /****************************/
|
cannam@154
|
297 /* HARMONIC SHAPING CONTROL */
|
cannam@154
|
298 /****************************/
|
cannam@154
|
299 /* Control boosting of harmonic frequencies */
|
cannam@154
|
300 HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
|
cannam@154
|
301 psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
|
cannam@154
|
302
|
cannam@154
|
303 /* More harmonic boost for noisy input signals */
|
cannam@154
|
304 HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
|
cannam@154
|
305 SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
|
cannam@154
|
306
|
cannam@154
|
307 if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
cannam@154
|
308 /* More harmonic noise shaping for high bitrates or noisy input */
|
cannam@154
|
309 HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
|
cannam@154
|
310 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
|
cannam@154
|
311 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
|
cannam@154
|
312
|
cannam@154
|
313 /* Less harmonic noise shaping for less periodic signals */
|
cannam@154
|
314 HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
|
cannam@154
|
315 silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
|
cannam@154
|
316 } else {
|
cannam@154
|
317 HarmShapeGain_Q16 = 0;
|
cannam@154
|
318 }
|
cannam@154
|
319
|
cannam@154
|
320 /*************************/
|
cannam@154
|
321 /* Smooth over subframes */
|
cannam@154
|
322 /*************************/
|
cannam@154
|
323 for( k = 0; k < MAX_NB_SUBFR; k++ ) {
|
cannam@154
|
324 psShapeSt->HarmBoost_smth_Q16 =
|
cannam@154
|
325 silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
cannam@154
|
326 psShapeSt->HarmShapeGain_smth_Q16 =
|
cannam@154
|
327 silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
cannam@154
|
328 psShapeSt->Tilt_smth_Q16 =
|
cannam@154
|
329 silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
cannam@154
|
330
|
cannam@154
|
331 psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 );
|
cannam@154
|
332 psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
|
cannam@154
|
333 psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 );
|
cannam@154
|
334 }
|
cannam@154
|
335 RESTORE_STACK;
|
cannam@154
|
336 }
|