annotate src/opus-1.3/silk/fixed/burg_modified_FIX.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /***********************************************************************
cannam@154 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
cannam@154 3 Redistribution and use in source and binary forms, with or without
cannam@154 4 modification, are permitted provided that the following conditions
cannam@154 5 are met:
cannam@154 6 - Redistributions of source code must retain the above copyright notice,
cannam@154 7 this list of conditions and the following disclaimer.
cannam@154 8 - Redistributions in binary form must reproduce the above copyright
cannam@154 9 notice, this list of conditions and the following disclaimer in the
cannam@154 10 documentation and/or other materials provided with the distribution.
cannam@154 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
cannam@154 12 names of specific contributors, may be used to endorse or promote
cannam@154 13 products derived from this software without specific prior written
cannam@154 14 permission.
cannam@154 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
cannam@154 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
cannam@154 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
cannam@154 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
cannam@154 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
cannam@154 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
cannam@154 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
cannam@154 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
cannam@154 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
cannam@154 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
cannam@154 25 POSSIBILITY OF SUCH DAMAGE.
cannam@154 26 ***********************************************************************/
cannam@154 27
cannam@154 28 #ifdef HAVE_CONFIG_H
cannam@154 29 #include "config.h"
cannam@154 30 #endif
cannam@154 31
cannam@154 32 #include "SigProc_FIX.h"
cannam@154 33 #include "define.h"
cannam@154 34 #include "tuning_parameters.h"
cannam@154 35 #include "pitch.h"
cannam@154 36
cannam@154 37 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
cannam@154 38
cannam@154 39 #define QA 25
cannam@154 40 #define N_BITS_HEAD_ROOM 3
cannam@154 41 #define MIN_RSHIFTS -16
cannam@154 42 #define MAX_RSHIFTS (32 - QA)
cannam@154 43
cannam@154 44 /* Compute reflection coefficients from input signal */
cannam@154 45 void silk_burg_modified_c(
cannam@154 46 opus_int32 *res_nrg, /* O Residual energy */
cannam@154 47 opus_int *res_nrg_Q, /* O Residual energy Q value */
cannam@154 48 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
cannam@154 49 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
cannam@154 50 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
cannam@154 51 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
cannam@154 52 const opus_int nb_subfr, /* I Number of subframes stacked in x */
cannam@154 53 const opus_int D, /* I Order */
cannam@154 54 int arch /* I Run-time architecture */
cannam@154 55 )
cannam@154 56 {
cannam@154 57 opus_int k, n, s, lz, rshifts, reached_max_gain;
cannam@154 58 opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
cannam@154 59 const opus_int16 *x_ptr;
cannam@154 60 opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
cannam@154 61 opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
cannam@154 62 opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
cannam@154 63 opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
cannam@154 64 opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
cannam@154 65 opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
cannam@154 66 opus_int64 C0_64;
cannam@154 67
cannam@154 68 celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
cannam@154 69
cannam@154 70 /* Compute autocorrelations, added over subframes */
cannam@154 71 C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch );
cannam@154 72 lz = silk_CLZ64(C0_64);
cannam@154 73 rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz;
cannam@154 74 if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS;
cannam@154 75 if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS;
cannam@154 76
cannam@154 77 if (rshifts > 0) {
cannam@154 78 C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts );
cannam@154 79 } else {
cannam@154 80 C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts );
cannam@154 81 }
cannam@154 82
cannam@154 83 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
cannam@154 84 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
cannam@154 85 if( rshifts > 0 ) {
cannam@154 86 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 87 x_ptr = x + s * subfr_length;
cannam@154 88 for( n = 1; n < D + 1; n++ ) {
cannam@154 89 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
cannam@154 90 silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
cannam@154 91 }
cannam@154 92 }
cannam@154 93 } else {
cannam@154 94 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 95 int i;
cannam@154 96 opus_int32 d;
cannam@154 97 x_ptr = x + s * subfr_length;
cannam@154 98 celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
cannam@154 99 for( n = 1; n < D + 1; n++ ) {
cannam@154 100 for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
cannam@154 101 d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
cannam@154 102 xcorr[ n - 1 ] += d;
cannam@154 103 }
cannam@154 104 for( n = 1; n < D + 1; n++ ) {
cannam@154 105 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
cannam@154 106 }
cannam@154 107 }
cannam@154 108 }
cannam@154 109 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
cannam@154 110
cannam@154 111 /* Initialize */
cannam@154 112 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
cannam@154 113
cannam@154 114 invGain_Q30 = (opus_int32)1 << 30;
cannam@154 115 reached_max_gain = 0;
cannam@154 116 for( n = 0; n < D; n++ ) {
cannam@154 117 /* Update first row of correlation matrix (without first element) */
cannam@154 118 /* Update last row of correlation matrix (without last element, stored in reversed order) */
cannam@154 119 /* Update C * Af */
cannam@154 120 /* Update C * flipud(Af) (stored in reversed order) */
cannam@154 121 if( rshifts > -2 ) {
cannam@154 122 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 123 x_ptr = x + s * subfr_length;
cannam@154 124 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
cannam@154 125 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
cannam@154 126 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
cannam@154 127 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
cannam@154 128 for( k = 0; k < n; k++ ) {
cannam@154 129 C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
cannam@154 130 C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
cannam@154 131 Atmp_QA = Af_QA[ k ];
cannam@154 132 tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
cannam@154 133 tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
cannam@154 134 }
cannam@154 135 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
cannam@154 136 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
cannam@154 137 for( k = 0; k <= n; k++ ) {
cannam@154 138 CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
cannam@154 139 CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
cannam@154 140 }
cannam@154 141 }
cannam@154 142 } else {
cannam@154 143 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 144 x_ptr = x + s * subfr_length;
cannam@154 145 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
cannam@154 146 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
cannam@154 147 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
cannam@154 148 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
cannam@154 149 for( k = 0; k < n; k++ ) {
cannam@154 150 C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
cannam@154 151 C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
cannam@154 152 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
cannam@154 153 /* We sometimes have get overflows in the multiplications (even beyond +/- 2^32),
cannam@154 154 but they cancel each other and the real result seems to always fit in a 32-bit
cannam@154 155 signed integer. This was determined experimentally, not theoretically (unfortunately). */
cannam@154 156 tmp1 = silk_MLA_ovflw( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
cannam@154 157 tmp2 = silk_MLA_ovflw( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
cannam@154 158 }
cannam@154 159 tmp1 = -tmp1; /* Q17 */
cannam@154 160 tmp2 = -tmp2; /* Q17 */
cannam@154 161 for( k = 0; k <= n; k++ ) {
cannam@154 162 CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
cannam@154 163 silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
cannam@154 164 CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
cannam@154 165 silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
cannam@154 166 }
cannam@154 167 }
cannam@154 168 }
cannam@154 169
cannam@154 170 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
cannam@154 171 tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
cannam@154 172 tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
cannam@154 173 num = 0; /* Q( -rshifts ) */
cannam@154 174 nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
cannam@154 175 for( k = 0; k < n; k++ ) {
cannam@154 176 Atmp_QA = Af_QA[ k ];
cannam@154 177 lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
cannam@154 178 lz = silk_min( 32 - QA, lz );
cannam@154 179 Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
cannam@154 180
cannam@154 181 tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
cannam@154 182 tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
cannam@154 183 num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
cannam@154 184 nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
cannam@154 185 Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
cannam@154 186 }
cannam@154 187 CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
cannam@154 188 CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
cannam@154 189 num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
cannam@154 190 num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
cannam@154 191
cannam@154 192 /* Calculate the next order reflection (parcor) coefficient */
cannam@154 193 if( silk_abs( num ) < nrg ) {
cannam@154 194 rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
cannam@154 195 } else {
cannam@154 196 rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
cannam@154 197 }
cannam@154 198
cannam@154 199 /* Update inverse prediction gain */
cannam@154 200 tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
cannam@154 201 tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
cannam@154 202 if( tmp1 <= minInvGain_Q30 ) {
cannam@154 203 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
cannam@154 204 tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
cannam@154 205 rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
cannam@154 206 if( rc_Q31 > 0 ) {
cannam@154 207 /* Newton-Raphson iteration */
cannam@154 208 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
cannam@154 209 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
cannam@154 210 if( num < 0 ) {
cannam@154 211 /* Ensure adjusted reflection coefficients has the original sign */
cannam@154 212 rc_Q31 = -rc_Q31;
cannam@154 213 }
cannam@154 214 }
cannam@154 215 invGain_Q30 = minInvGain_Q30;
cannam@154 216 reached_max_gain = 1;
cannam@154 217 } else {
cannam@154 218 invGain_Q30 = tmp1;
cannam@154 219 }
cannam@154 220
cannam@154 221 /* Update the AR coefficients */
cannam@154 222 for( k = 0; k < (n + 1) >> 1; k++ ) {
cannam@154 223 tmp1 = Af_QA[ k ]; /* QA */
cannam@154 224 tmp2 = Af_QA[ n - k - 1 ]; /* QA */
cannam@154 225 Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
cannam@154 226 Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
cannam@154 227 }
cannam@154 228 Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
cannam@154 229
cannam@154 230 if( reached_max_gain ) {
cannam@154 231 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
cannam@154 232 for( k = n + 1; k < D; k++ ) {
cannam@154 233 Af_QA[ k ] = 0;
cannam@154 234 }
cannam@154 235 break;
cannam@154 236 }
cannam@154 237
cannam@154 238 /* Update C * Af and C * Ab */
cannam@154 239 for( k = 0; k <= n + 1; k++ ) {
cannam@154 240 tmp1 = CAf[ k ]; /* Q( -rshifts ) */
cannam@154 241 tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
cannam@154 242 CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
cannam@154 243 CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
cannam@154 244 }
cannam@154 245 }
cannam@154 246
cannam@154 247 if( reached_max_gain ) {
cannam@154 248 for( k = 0; k < D; k++ ) {
cannam@154 249 /* Scale coefficients */
cannam@154 250 A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
cannam@154 251 }
cannam@154 252 /* Subtract energy of preceding samples from C0 */
cannam@154 253 if( rshifts > 0 ) {
cannam@154 254 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 255 x_ptr = x + s * subfr_length;
cannam@154 256 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
cannam@154 257 }
cannam@154 258 } else {
cannam@154 259 for( s = 0; s < nb_subfr; s++ ) {
cannam@154 260 x_ptr = x + s * subfr_length;
cannam@154 261 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
cannam@154 262 }
cannam@154 263 }
cannam@154 264 /* Approximate residual energy */
cannam@154 265 *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
cannam@154 266 *res_nrg_Q = -rshifts;
cannam@154 267 } else {
cannam@154 268 /* Return residual energy */
cannam@154 269 nrg = CAf[ 0 ]; /* Q( -rshifts ) */
cannam@154 270 tmp1 = (opus_int32)1 << 16; /* Q16 */
cannam@154 271 for( k = 0; k < D; k++ ) {
cannam@154 272 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
cannam@154 273 nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
cannam@154 274 tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
cannam@154 275 A_Q16[ k ] = -Atmp1;
cannam@154 276 }
cannam@154 277 *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
cannam@154 278 *res_nrg_Q = -rshifts;
cannam@154 279 }
cannam@154 280 }