cannam@154
|
1 /***********************************************************************
|
cannam@154
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
cannam@154
|
3 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
4 modification, are permitted provided that the following conditions
|
cannam@154
|
5 are met:
|
cannam@154
|
6 - Redistributions of source code must retain the above copyright notice,
|
cannam@154
|
7 this list of conditions and the following disclaimer.
|
cannam@154
|
8 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
9 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
10 documentation and/or other materials provided with the distribution.
|
cannam@154
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
|
cannam@154
|
12 names of specific contributors, may be used to endorse or promote
|
cannam@154
|
13 products derived from this software without specific prior written
|
cannam@154
|
14 permission.
|
cannam@154
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
cannam@154
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
cannam@154
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
cannam@154
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
cannam@154
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
cannam@154
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
cannam@154
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
cannam@154
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
cannam@154
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
cannam@154
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
cannam@154
|
25 POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
26 ***********************************************************************/
|
cannam@154
|
27
|
cannam@154
|
28 #ifdef HAVE_CONFIG_H
|
cannam@154
|
29 #include "config.h"
|
cannam@154
|
30 #endif
|
cannam@154
|
31
|
cannam@154
|
32 #include "SigProc_FIX.h"
|
cannam@154
|
33 #include "define.h"
|
cannam@154
|
34 #include "tuning_parameters.h"
|
cannam@154
|
35 #include "pitch.h"
|
cannam@154
|
36
|
cannam@154
|
37 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
|
cannam@154
|
38
|
cannam@154
|
39 #define QA 25
|
cannam@154
|
40 #define N_BITS_HEAD_ROOM 3
|
cannam@154
|
41 #define MIN_RSHIFTS -16
|
cannam@154
|
42 #define MAX_RSHIFTS (32 - QA)
|
cannam@154
|
43
|
cannam@154
|
44 /* Compute reflection coefficients from input signal */
|
cannam@154
|
45 void silk_burg_modified_c(
|
cannam@154
|
46 opus_int32 *res_nrg, /* O Residual energy */
|
cannam@154
|
47 opus_int *res_nrg_Q, /* O Residual energy Q value */
|
cannam@154
|
48 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
cannam@154
|
49 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
cannam@154
|
50 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
cannam@154
|
51 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
cannam@154
|
52 const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
cannam@154
|
53 const opus_int D, /* I Order */
|
cannam@154
|
54 int arch /* I Run-time architecture */
|
cannam@154
|
55 )
|
cannam@154
|
56 {
|
cannam@154
|
57 opus_int k, n, s, lz, rshifts, reached_max_gain;
|
cannam@154
|
58 opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
|
cannam@154
|
59 const opus_int16 *x_ptr;
|
cannam@154
|
60 opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
61 opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
62 opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
63 opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
|
cannam@154
|
64 opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
|
cannam@154
|
65 opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
|
cannam@154
|
66 opus_int64 C0_64;
|
cannam@154
|
67
|
cannam@154
|
68 celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
|
cannam@154
|
69
|
cannam@154
|
70 /* Compute autocorrelations, added over subframes */
|
cannam@154
|
71 C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch );
|
cannam@154
|
72 lz = silk_CLZ64(C0_64);
|
cannam@154
|
73 rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz;
|
cannam@154
|
74 if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS;
|
cannam@154
|
75 if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS;
|
cannam@154
|
76
|
cannam@154
|
77 if (rshifts > 0) {
|
cannam@154
|
78 C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts );
|
cannam@154
|
79 } else {
|
cannam@154
|
80 C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts );
|
cannam@154
|
81 }
|
cannam@154
|
82
|
cannam@154
|
83 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
cannam@154
|
84 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
cannam@154
|
85 if( rshifts > 0 ) {
|
cannam@154
|
86 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
87 x_ptr = x + s * subfr_length;
|
cannam@154
|
88 for( n = 1; n < D + 1; n++ ) {
|
cannam@154
|
89 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
|
cannam@154
|
90 silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
|
cannam@154
|
91 }
|
cannam@154
|
92 }
|
cannam@154
|
93 } else {
|
cannam@154
|
94 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
95 int i;
|
cannam@154
|
96 opus_int32 d;
|
cannam@154
|
97 x_ptr = x + s * subfr_length;
|
cannam@154
|
98 celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
|
cannam@154
|
99 for( n = 1; n < D + 1; n++ ) {
|
cannam@154
|
100 for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
|
cannam@154
|
101 d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
|
cannam@154
|
102 xcorr[ n - 1 ] += d;
|
cannam@154
|
103 }
|
cannam@154
|
104 for( n = 1; n < D + 1; n++ ) {
|
cannam@154
|
105 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
|
cannam@154
|
106 }
|
cannam@154
|
107 }
|
cannam@154
|
108 }
|
cannam@154
|
109 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
cannam@154
|
110
|
cannam@154
|
111 /* Initialize */
|
cannam@154
|
112 CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
cannam@154
|
113
|
cannam@154
|
114 invGain_Q30 = (opus_int32)1 << 30;
|
cannam@154
|
115 reached_max_gain = 0;
|
cannam@154
|
116 for( n = 0; n < D; n++ ) {
|
cannam@154
|
117 /* Update first row of correlation matrix (without first element) */
|
cannam@154
|
118 /* Update last row of correlation matrix (without last element, stored in reversed order) */
|
cannam@154
|
119 /* Update C * Af */
|
cannam@154
|
120 /* Update C * flipud(Af) (stored in reversed order) */
|
cannam@154
|
121 if( rshifts > -2 ) {
|
cannam@154
|
122 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
123 x_ptr = x + s * subfr_length;
|
cannam@154
|
124 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
125 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
126 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
|
cannam@154
|
127 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
|
cannam@154
|
128 for( k = 0; k < n; k++ ) {
|
cannam@154
|
129 C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
cannam@154
|
130 C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
cannam@154
|
131 Atmp_QA = Af_QA[ k ];
|
cannam@154
|
132 tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
|
cannam@154
|
133 tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
|
cannam@154
|
134 }
|
cannam@154
|
135 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
136 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
cannam@154
|
137 for( k = 0; k <= n; k++ ) {
|
cannam@154
|
138 CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
|
cannam@154
|
139 CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
|
cannam@154
|
140 }
|
cannam@154
|
141 }
|
cannam@154
|
142 } else {
|
cannam@154
|
143 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
144 x_ptr = x + s * subfr_length;
|
cannam@154
|
145 x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
|
cannam@154
|
146 x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
|
cannam@154
|
147 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
|
cannam@154
|
148 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
|
cannam@154
|
149 for( k = 0; k < n; k++ ) {
|
cannam@154
|
150 C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
cannam@154
|
151 C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
cannam@154
|
152 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
|
cannam@154
|
153 /* We sometimes have get overflows in the multiplications (even beyond +/- 2^32),
|
cannam@154
|
154 but they cancel each other and the real result seems to always fit in a 32-bit
|
cannam@154
|
155 signed integer. This was determined experimentally, not theoretically (unfortunately). */
|
cannam@154
|
156 tmp1 = silk_MLA_ovflw( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
|
cannam@154
|
157 tmp2 = silk_MLA_ovflw( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
|
cannam@154
|
158 }
|
cannam@154
|
159 tmp1 = -tmp1; /* Q17 */
|
cannam@154
|
160 tmp2 = -tmp2; /* Q17 */
|
cannam@154
|
161 for( k = 0; k <= n; k++ ) {
|
cannam@154
|
162 CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
|
cannam@154
|
163 silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
cannam@154
|
164 CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
|
cannam@154
|
165 silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
cannam@154
|
166 }
|
cannam@154
|
167 }
|
cannam@154
|
168 }
|
cannam@154
|
169
|
cannam@154
|
170 /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
|
cannam@154
|
171 tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
|
cannam@154
|
172 tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
|
cannam@154
|
173 num = 0; /* Q( -rshifts ) */
|
cannam@154
|
174 nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
|
cannam@154
|
175 for( k = 0; k < n; k++ ) {
|
cannam@154
|
176 Atmp_QA = Af_QA[ k ];
|
cannam@154
|
177 lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
|
cannam@154
|
178 lz = silk_min( 32 - QA, lz );
|
cannam@154
|
179 Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
|
cannam@154
|
180
|
cannam@154
|
181 tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
cannam@154
|
182 tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
cannam@154
|
183 num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
cannam@154
|
184 nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
|
cannam@154
|
185 Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
|
cannam@154
|
186 }
|
cannam@154
|
187 CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
|
cannam@154
|
188 CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
|
cannam@154
|
189 num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
|
cannam@154
|
190 num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
|
cannam@154
|
191
|
cannam@154
|
192 /* Calculate the next order reflection (parcor) coefficient */
|
cannam@154
|
193 if( silk_abs( num ) < nrg ) {
|
cannam@154
|
194 rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
|
cannam@154
|
195 } else {
|
cannam@154
|
196 rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
|
cannam@154
|
197 }
|
cannam@154
|
198
|
cannam@154
|
199 /* Update inverse prediction gain */
|
cannam@154
|
200 tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
|
cannam@154
|
201 tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
|
cannam@154
|
202 if( tmp1 <= minInvGain_Q30 ) {
|
cannam@154
|
203 /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
|
cannam@154
|
204 tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
|
cannam@154
|
205 rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
|
cannam@154
|
206 if( rc_Q31 > 0 ) {
|
cannam@154
|
207 /* Newton-Raphson iteration */
|
cannam@154
|
208 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
|
cannam@154
|
209 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
|
cannam@154
|
210 if( num < 0 ) {
|
cannam@154
|
211 /* Ensure adjusted reflection coefficients has the original sign */
|
cannam@154
|
212 rc_Q31 = -rc_Q31;
|
cannam@154
|
213 }
|
cannam@154
|
214 }
|
cannam@154
|
215 invGain_Q30 = minInvGain_Q30;
|
cannam@154
|
216 reached_max_gain = 1;
|
cannam@154
|
217 } else {
|
cannam@154
|
218 invGain_Q30 = tmp1;
|
cannam@154
|
219 }
|
cannam@154
|
220
|
cannam@154
|
221 /* Update the AR coefficients */
|
cannam@154
|
222 for( k = 0; k < (n + 1) >> 1; k++ ) {
|
cannam@154
|
223 tmp1 = Af_QA[ k ]; /* QA */
|
cannam@154
|
224 tmp2 = Af_QA[ n - k - 1 ]; /* QA */
|
cannam@154
|
225 Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
|
cannam@154
|
226 Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
|
cannam@154
|
227 }
|
cannam@154
|
228 Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
|
cannam@154
|
229
|
cannam@154
|
230 if( reached_max_gain ) {
|
cannam@154
|
231 /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
|
cannam@154
|
232 for( k = n + 1; k < D; k++ ) {
|
cannam@154
|
233 Af_QA[ k ] = 0;
|
cannam@154
|
234 }
|
cannam@154
|
235 break;
|
cannam@154
|
236 }
|
cannam@154
|
237
|
cannam@154
|
238 /* Update C * Af and C * Ab */
|
cannam@154
|
239 for( k = 0; k <= n + 1; k++ ) {
|
cannam@154
|
240 tmp1 = CAf[ k ]; /* Q( -rshifts ) */
|
cannam@154
|
241 tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
|
cannam@154
|
242 CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
cannam@154
|
243 CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
cannam@154
|
244 }
|
cannam@154
|
245 }
|
cannam@154
|
246
|
cannam@154
|
247 if( reached_max_gain ) {
|
cannam@154
|
248 for( k = 0; k < D; k++ ) {
|
cannam@154
|
249 /* Scale coefficients */
|
cannam@154
|
250 A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
|
cannam@154
|
251 }
|
cannam@154
|
252 /* Subtract energy of preceding samples from C0 */
|
cannam@154
|
253 if( rshifts > 0 ) {
|
cannam@154
|
254 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
255 x_ptr = x + s * subfr_length;
|
cannam@154
|
256 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
|
cannam@154
|
257 }
|
cannam@154
|
258 } else {
|
cannam@154
|
259 for( s = 0; s < nb_subfr; s++ ) {
|
cannam@154
|
260 x_ptr = x + s * subfr_length;
|
cannam@154
|
261 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
|
cannam@154
|
262 }
|
cannam@154
|
263 }
|
cannam@154
|
264 /* Approximate residual energy */
|
cannam@154
|
265 *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
|
cannam@154
|
266 *res_nrg_Q = -rshifts;
|
cannam@154
|
267 } else {
|
cannam@154
|
268 /* Return residual energy */
|
cannam@154
|
269 nrg = CAf[ 0 ]; /* Q( -rshifts ) */
|
cannam@154
|
270 tmp1 = (opus_int32)1 << 16; /* Q16 */
|
cannam@154
|
271 for( k = 0; k < D; k++ ) {
|
cannam@154
|
272 Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
|
cannam@154
|
273 nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
|
cannam@154
|
274 tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
|
cannam@154
|
275 A_Q16[ k ] = -Atmp1;
|
cannam@154
|
276 }
|
cannam@154
|
277 *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
|
cannam@154
|
278 *res_nrg_Q = -rshifts;
|
cannam@154
|
279 }
|
cannam@154
|
280 }
|