annotate src/opus-1.3/celt/x86/vq_sse2.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 4664ac0c1032
children
rev   line source
cannam@154 1 /* Copyright (c) 2007-2008 CSIRO
cannam@154 2 Copyright (c) 2007-2009 Xiph.Org Foundation
cannam@154 3 Copyright (c) 2007-2016 Jean-Marc Valin */
cannam@154 4 /*
cannam@154 5 Redistribution and use in source and binary forms, with or without
cannam@154 6 modification, are permitted provided that the following conditions
cannam@154 7 are met:
cannam@154 8
cannam@154 9 - Redistributions of source code must retain the above copyright
cannam@154 10 notice, this list of conditions and the following disclaimer.
cannam@154 11
cannam@154 12 - Redistributions in binary form must reproduce the above copyright
cannam@154 13 notice, this list of conditions and the following disclaimer in the
cannam@154 14 documentation and/or other materials provided with the distribution.
cannam@154 15
cannam@154 16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
cannam@154 17 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
cannam@154 18 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
cannam@154 19 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
cannam@154 20 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
cannam@154 21 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
cannam@154 22 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
cannam@154 23 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
cannam@154 24 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
cannam@154 25 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
cannam@154 26 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cannam@154 27 */
cannam@154 28
cannam@154 29 #ifdef HAVE_CONFIG_H
cannam@154 30 #include "config.h"
cannam@154 31 #endif
cannam@154 32
cannam@154 33 #include <xmmintrin.h>
cannam@154 34 #include <emmintrin.h>
cannam@154 35 #include "celt_lpc.h"
cannam@154 36 #include "stack_alloc.h"
cannam@154 37 #include "mathops.h"
cannam@154 38 #include "vq.h"
cannam@154 39 #include "x86cpu.h"
cannam@154 40
cannam@154 41
cannam@154 42 #ifndef FIXED_POINT
cannam@154 43
cannam@154 44 opus_val16 op_pvq_search_sse2(celt_norm *_X, int *iy, int K, int N, int arch)
cannam@154 45 {
cannam@154 46 int i, j;
cannam@154 47 int pulsesLeft;
cannam@154 48 float xy, yy;
cannam@154 49 VARDECL(celt_norm, y);
cannam@154 50 VARDECL(celt_norm, X);
cannam@154 51 VARDECL(float, signy);
cannam@154 52 __m128 signmask;
cannam@154 53 __m128 sums;
cannam@154 54 __m128i fours;
cannam@154 55 SAVE_STACK;
cannam@154 56
cannam@154 57 (void)arch;
cannam@154 58 /* All bits set to zero, except for the sign bit. */
cannam@154 59 signmask = _mm_set_ps1(-0.f);
cannam@154 60 fours = _mm_set_epi32(4, 4, 4, 4);
cannam@154 61 ALLOC(y, N+3, celt_norm);
cannam@154 62 ALLOC(X, N+3, celt_norm);
cannam@154 63 ALLOC(signy, N+3, float);
cannam@154 64
cannam@154 65 OPUS_COPY(X, _X, N);
cannam@154 66 X[N] = X[N+1] = X[N+2] = 0;
cannam@154 67 sums = _mm_setzero_ps();
cannam@154 68 for (j=0;j<N;j+=4)
cannam@154 69 {
cannam@154 70 __m128 x4, s4;
cannam@154 71 x4 = _mm_loadu_ps(&X[j]);
cannam@154 72 s4 = _mm_cmplt_ps(x4, _mm_setzero_ps());
cannam@154 73 /* Get rid of the sign */
cannam@154 74 x4 = _mm_andnot_ps(signmask, x4);
cannam@154 75 sums = _mm_add_ps(sums, x4);
cannam@154 76 /* Clear y and iy in case we don't do the projection. */
cannam@154 77 _mm_storeu_ps(&y[j], _mm_setzero_ps());
cannam@154 78 _mm_storeu_si128((__m128i*)&iy[j], _mm_setzero_si128());
cannam@154 79 _mm_storeu_ps(&X[j], x4);
cannam@154 80 _mm_storeu_ps(&signy[j], s4);
cannam@154 81 }
cannam@154 82 sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(1, 0, 3, 2)));
cannam@154 83 sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(2, 3, 0, 1)));
cannam@154 84
cannam@154 85 xy = yy = 0;
cannam@154 86
cannam@154 87 pulsesLeft = K;
cannam@154 88
cannam@154 89 /* Do a pre-search by projecting on the pyramid */
cannam@154 90 if (K > (N>>1))
cannam@154 91 {
cannam@154 92 __m128i pulses_sum;
cannam@154 93 __m128 yy4, xy4;
cannam@154 94 __m128 rcp4;
cannam@154 95 opus_val32 sum = _mm_cvtss_f32(sums);
cannam@154 96 /* If X is too small, just replace it with a pulse at 0 */
cannam@154 97 /* Prevents infinities and NaNs from causing too many pulses
cannam@154 98 to be allocated. 64 is an approximation of infinity here. */
cannam@154 99 if (!(sum > EPSILON && sum < 64))
cannam@154 100 {
cannam@154 101 X[0] = QCONST16(1.f,14);
cannam@154 102 j=1; do
cannam@154 103 X[j]=0;
cannam@154 104 while (++j<N);
cannam@154 105 sums = _mm_set_ps1(1.f);
cannam@154 106 }
cannam@154 107 /* Using K+e with e < 1 guarantees we cannot get more than K pulses. */
cannam@154 108 rcp4 = _mm_mul_ps(_mm_set_ps1((float)(K+.8)), _mm_rcp_ps(sums));
cannam@154 109 xy4 = yy4 = _mm_setzero_ps();
cannam@154 110 pulses_sum = _mm_setzero_si128();
cannam@154 111 for (j=0;j<N;j+=4)
cannam@154 112 {
cannam@154 113 __m128 rx4, x4, y4;
cannam@154 114 __m128i iy4;
cannam@154 115 x4 = _mm_loadu_ps(&X[j]);
cannam@154 116 rx4 = _mm_mul_ps(x4, rcp4);
cannam@154 117 iy4 = _mm_cvttps_epi32(rx4);
cannam@154 118 pulses_sum = _mm_add_epi32(pulses_sum, iy4);
cannam@154 119 _mm_storeu_si128((__m128i*)&iy[j], iy4);
cannam@154 120 y4 = _mm_cvtepi32_ps(iy4);
cannam@154 121 xy4 = _mm_add_ps(xy4, _mm_mul_ps(x4, y4));
cannam@154 122 yy4 = _mm_add_ps(yy4, _mm_mul_ps(y4, y4));
cannam@154 123 /* double the y[] vector so we don't have to do it in the search loop. */
cannam@154 124 _mm_storeu_ps(&y[j], _mm_add_ps(y4, y4));
cannam@154 125 }
cannam@154 126 pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(1, 0, 3, 2)));
cannam@154 127 pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(2, 3, 0, 1)));
cannam@154 128 pulsesLeft -= _mm_cvtsi128_si32(pulses_sum);
cannam@154 129 xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(1, 0, 3, 2)));
cannam@154 130 xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(2, 3, 0, 1)));
cannam@154 131 xy = _mm_cvtss_f32(xy4);
cannam@154 132 yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(1, 0, 3, 2)));
cannam@154 133 yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(2, 3, 0, 1)));
cannam@154 134 yy = _mm_cvtss_f32(yy4);
cannam@154 135 }
cannam@154 136 X[N] = X[N+1] = X[N+2] = -100;
cannam@154 137 y[N] = y[N+1] = y[N+2] = 100;
cannam@154 138 celt_sig_assert(pulsesLeft>=0);
cannam@154 139
cannam@154 140 /* This should never happen, but just in case it does (e.g. on silence)
cannam@154 141 we fill the first bin with pulses. */
cannam@154 142 if (pulsesLeft > N+3)
cannam@154 143 {
cannam@154 144 opus_val16 tmp = (opus_val16)pulsesLeft;
cannam@154 145 yy = MAC16_16(yy, tmp, tmp);
cannam@154 146 yy = MAC16_16(yy, tmp, y[0]);
cannam@154 147 iy[0] += pulsesLeft;
cannam@154 148 pulsesLeft=0;
cannam@154 149 }
cannam@154 150
cannam@154 151 for (i=0;i<pulsesLeft;i++)
cannam@154 152 {
cannam@154 153 int best_id;
cannam@154 154 __m128 xy4, yy4;
cannam@154 155 __m128 max, max2;
cannam@154 156 __m128i count;
cannam@154 157 __m128i pos;
cannam@154 158 /* The squared magnitude term gets added anyway, so we might as well
cannam@154 159 add it outside the loop */
cannam@154 160 yy = ADD16(yy, 1);
cannam@154 161 xy4 = _mm_load1_ps(&xy);
cannam@154 162 yy4 = _mm_load1_ps(&yy);
cannam@154 163 max = _mm_setzero_ps();
cannam@154 164 pos = _mm_setzero_si128();
cannam@154 165 count = _mm_set_epi32(3, 2, 1, 0);
cannam@154 166 for (j=0;j<N;j+=4)
cannam@154 167 {
cannam@154 168 __m128 x4, y4, r4;
cannam@154 169 x4 = _mm_loadu_ps(&X[j]);
cannam@154 170 y4 = _mm_loadu_ps(&y[j]);
cannam@154 171 x4 = _mm_add_ps(x4, xy4);
cannam@154 172 y4 = _mm_add_ps(y4, yy4);
cannam@154 173 y4 = _mm_rsqrt_ps(y4);
cannam@154 174 r4 = _mm_mul_ps(x4, y4);
cannam@154 175 /* Update the index of the max. */
cannam@154 176 pos = _mm_max_epi16(pos, _mm_and_si128(count, _mm_castps_si128(_mm_cmpgt_ps(r4, max))));
cannam@154 177 /* Update the max. */
cannam@154 178 max = _mm_max_ps(max, r4);
cannam@154 179 /* Update the indices (+4) */
cannam@154 180 count = _mm_add_epi32(count, fours);
cannam@154 181 }
cannam@154 182 /* Horizontal max */
cannam@154 183 max2 = _mm_max_ps(max, _mm_shuffle_ps(max, max, _MM_SHUFFLE(1, 0, 3, 2)));
cannam@154 184 max2 = _mm_max_ps(max2, _mm_shuffle_ps(max2, max2, _MM_SHUFFLE(2, 3, 0, 1)));
cannam@154 185 /* Now that max2 contains the max at all positions, look at which value(s) of the
cannam@154 186 partial max is equal to the global max. */
cannam@154 187 pos = _mm_and_si128(pos, _mm_castps_si128(_mm_cmpeq_ps(max, max2)));
cannam@154 188 pos = _mm_max_epi16(pos, _mm_unpackhi_epi64(pos, pos));
cannam@154 189 pos = _mm_max_epi16(pos, _mm_shufflelo_epi16(pos, _MM_SHUFFLE(1, 0, 3, 2)));
cannam@154 190 best_id = _mm_cvtsi128_si32(pos);
cannam@154 191
cannam@154 192 /* Updating the sums of the new pulse(s) */
cannam@154 193 xy = ADD32(xy, EXTEND32(X[best_id]));
cannam@154 194 /* We're multiplying y[j] by two so we don't have to do it here */
cannam@154 195 yy = ADD16(yy, y[best_id]);
cannam@154 196
cannam@154 197 /* Only now that we've made the final choice, update y/iy */
cannam@154 198 /* Multiplying y[j] by 2 so we don't have to do it everywhere else */
cannam@154 199 y[best_id] += 2;
cannam@154 200 iy[best_id]++;
cannam@154 201 }
cannam@154 202
cannam@154 203 /* Put the original sign back */
cannam@154 204 for (j=0;j<N;j+=4)
cannam@154 205 {
cannam@154 206 __m128i y4;
cannam@154 207 __m128i s4;
cannam@154 208 y4 = _mm_loadu_si128((__m128i*)&iy[j]);
cannam@154 209 s4 = _mm_castps_si128(_mm_loadu_ps(&signy[j]));
cannam@154 210 y4 = _mm_xor_si128(_mm_add_epi32(y4, s4), s4);
cannam@154 211 _mm_storeu_si128((__m128i*)&iy[j], y4);
cannam@154 212 }
cannam@154 213 RESTORE_STACK;
cannam@154 214 return yy;
cannam@154 215 }
cannam@154 216
cannam@154 217 #endif