annotate src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_8.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:07:10 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 82 FP additions, 52 FP multiplications,
cannam@167 32 * (or, 60 additions, 30 multiplications, 22 fused multiply/add),
cannam@167 33 * 31 stack variables, 2 constants, and 32 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/scalar/hc2cf.h"
cannam@167 36
cannam@167 37 static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@167 44 E Ty, T14, TO, T1o, Tv, T16, TG, T1m, Ta, T19, TV, T1h, Tk, T1b, T11;
cannam@167 45 E T1j;
cannam@167 46 {
cannam@167 47 E Tw, Tx, TN, TI, TJ, TK;
cannam@167 48 Tw = Ip[0];
cannam@167 49 Tx = Im[0];
cannam@167 50 TN = Tw + Tx;
cannam@167 51 TI = Rm[0];
cannam@167 52 TJ = Rp[0];
cannam@167 53 TK = TI - TJ;
cannam@167 54 Ty = Tw - Tx;
cannam@167 55 T14 = TJ + TI;
cannam@167 56 {
cannam@167 57 E TH, TL, TM, T1n;
cannam@167 58 TH = W[0];
cannam@167 59 TL = TH * TK;
cannam@167 60 TM = W[1];
cannam@167 61 T1n = TM * TK;
cannam@167 62 TO = FNMS(TM, TN, TL);
cannam@167 63 T1o = FMA(TH, TN, T1n);
cannam@167 64 }
cannam@167 65 }
cannam@167 66 {
cannam@167 67 E Tp, TF, Tu, TC;
cannam@167 68 {
cannam@167 69 E Tn, To, Ts, Tt;
cannam@167 70 Tn = Ip[WS(rs, 2)];
cannam@167 71 To = Im[WS(rs, 2)];
cannam@167 72 Tp = Tn - To;
cannam@167 73 TF = Tn + To;
cannam@167 74 Ts = Rp[WS(rs, 2)];
cannam@167 75 Tt = Rm[WS(rs, 2)];
cannam@167 76 Tu = Ts + Tt;
cannam@167 77 TC = Tt - Ts;
cannam@167 78 }
cannam@167 79 {
cannam@167 80 E Tq, T15, Tm, Tr;
cannam@167 81 Tm = W[6];
cannam@167 82 Tq = Tm * Tp;
cannam@167 83 T15 = Tm * Tu;
cannam@167 84 Tr = W[7];
cannam@167 85 Tv = FNMS(Tr, Tu, Tq);
cannam@167 86 T16 = FMA(Tr, Tp, T15);
cannam@167 87 }
cannam@167 88 {
cannam@167 89 E TB, TD, TE, T1l;
cannam@167 90 TB = W[8];
cannam@167 91 TD = TB * TC;
cannam@167 92 TE = W[9];
cannam@167 93 T1l = TE * TC;
cannam@167 94 TG = FNMS(TE, TF, TD);
cannam@167 95 T1m = FMA(TB, TF, T1l);
cannam@167 96 }
cannam@167 97 }
cannam@167 98 {
cannam@167 99 E T4, TU, T9, TR;
cannam@167 100 {
cannam@167 101 E T2, T3, T7, T8;
cannam@167 102 T2 = Ip[WS(rs, 1)];
cannam@167 103 T3 = Im[WS(rs, 1)];
cannam@167 104 T4 = T2 - T3;
cannam@167 105 TU = T2 + T3;
cannam@167 106 T7 = Rp[WS(rs, 1)];
cannam@167 107 T8 = Rm[WS(rs, 1)];
cannam@167 108 T9 = T7 + T8;
cannam@167 109 TR = T7 - T8;
cannam@167 110 }
cannam@167 111 {
cannam@167 112 E T5, T18, T1, T6;
cannam@167 113 T1 = W[2];
cannam@167 114 T5 = T1 * T4;
cannam@167 115 T18 = T1 * T9;
cannam@167 116 T6 = W[3];
cannam@167 117 Ta = FNMS(T6, T9, T5);
cannam@167 118 T19 = FMA(T6, T4, T18);
cannam@167 119 }
cannam@167 120 {
cannam@167 121 E TS, T1g, TQ, TT;
cannam@167 122 TQ = W[4];
cannam@167 123 TS = TQ * TR;
cannam@167 124 T1g = TQ * TU;
cannam@167 125 TT = W[5];
cannam@167 126 TV = FMA(TT, TU, TS);
cannam@167 127 T1h = FNMS(TT, TR, T1g);
cannam@167 128 }
cannam@167 129 }
cannam@167 130 {
cannam@167 131 E Te, T10, Tj, TX;
cannam@167 132 {
cannam@167 133 E Tc, Td, Th, Ti;
cannam@167 134 Tc = Ip[WS(rs, 3)];
cannam@167 135 Td = Im[WS(rs, 3)];
cannam@167 136 Te = Tc - Td;
cannam@167 137 T10 = Tc + Td;
cannam@167 138 Th = Rp[WS(rs, 3)];
cannam@167 139 Ti = Rm[WS(rs, 3)];
cannam@167 140 Tj = Th + Ti;
cannam@167 141 TX = Th - Ti;
cannam@167 142 }
cannam@167 143 {
cannam@167 144 E Tf, T1a, Tb, Tg;
cannam@167 145 Tb = W[10];
cannam@167 146 Tf = Tb * Te;
cannam@167 147 T1a = Tb * Tj;
cannam@167 148 Tg = W[11];
cannam@167 149 Tk = FNMS(Tg, Tj, Tf);
cannam@167 150 T1b = FMA(Tg, Te, T1a);
cannam@167 151 }
cannam@167 152 {
cannam@167 153 E TY, T1i, TW, TZ;
cannam@167 154 TW = W[12];
cannam@167 155 TY = TW * TX;
cannam@167 156 T1i = TW * T10;
cannam@167 157 TZ = W[13];
cannam@167 158 T11 = FMA(TZ, T10, TY);
cannam@167 159 T1j = FNMS(TZ, TX, T1i);
cannam@167 160 }
cannam@167 161 }
cannam@167 162 {
cannam@167 163 E TA, T1f, T1q, T1s, T13, T1e, T1d, T1r;
cannam@167 164 {
cannam@167 165 E Tl, Tz, T1k, T1p;
cannam@167 166 Tl = Ta + Tk;
cannam@167 167 Tz = Tv + Ty;
cannam@167 168 TA = Tl + Tz;
cannam@167 169 T1f = Tz - Tl;
cannam@167 170 T1k = T1h + T1j;
cannam@167 171 T1p = T1m + T1o;
cannam@167 172 T1q = T1k - T1p;
cannam@167 173 T1s = T1k + T1p;
cannam@167 174 }
cannam@167 175 {
cannam@167 176 E TP, T12, T17, T1c;
cannam@167 177 TP = TG + TO;
cannam@167 178 T12 = TV + T11;
cannam@167 179 T13 = TP - T12;
cannam@167 180 T1e = T12 + TP;
cannam@167 181 T17 = T14 + T16;
cannam@167 182 T1c = T19 + T1b;
cannam@167 183 T1d = T17 - T1c;
cannam@167 184 T1r = T17 + T1c;
cannam@167 185 }
cannam@167 186 Ip[0] = KP500000000 * (TA + T13);
cannam@167 187 Rp[0] = KP500000000 * (T1r + T1s);
cannam@167 188 Im[WS(rs, 3)] = KP500000000 * (T13 - TA);
cannam@167 189 Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s);
cannam@167 190 Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e);
cannam@167 191 Im[WS(rs, 1)] = KP500000000 * (T1q - T1f);
cannam@167 192 Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e);
cannam@167 193 Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q);
cannam@167 194 }
cannam@167 195 {
cannam@167 196 E T1v, T1H, T1F, T1L, T1y, T1I, T1B, T1J;
cannam@167 197 {
cannam@167 198 E T1t, T1u, T1D, T1E;
cannam@167 199 T1t = Ty - Tv;
cannam@167 200 T1u = T19 - T1b;
cannam@167 201 T1v = T1t - T1u;
cannam@167 202 T1H = T1u + T1t;
cannam@167 203 T1D = T14 - T16;
cannam@167 204 T1E = Ta - Tk;
cannam@167 205 T1F = T1D - T1E;
cannam@167 206 T1L = T1D + T1E;
cannam@167 207 }
cannam@167 208 {
cannam@167 209 E T1w, T1x, T1z, T1A;
cannam@167 210 T1w = T1j - T1h;
cannam@167 211 T1x = TV - T11;
cannam@167 212 T1y = T1w + T1x;
cannam@167 213 T1I = T1w - T1x;
cannam@167 214 T1z = TO - TG;
cannam@167 215 T1A = T1o - T1m;
cannam@167 216 T1B = T1z - T1A;
cannam@167 217 T1J = T1z + T1A;
cannam@167 218 }
cannam@167 219 {
cannam@167 220 E T1C, T1M, T1G, T1K;
cannam@167 221 T1C = T1y + T1B;
cannam@167 222 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v));
cannam@167 223 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v)));
cannam@167 224 T1M = T1I + T1J;
cannam@167 225 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L));
cannam@167 226 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L));
cannam@167 227 T1G = T1B - T1y;
cannam@167 228 Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F));
cannam@167 229 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F));
cannam@167 230 T1K = T1I - T1J;
cannam@167 231 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H));
cannam@167 232 Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H)));
cannam@167 233 }
cannam@167 234 }
cannam@167 235 }
cannam@167 236 }
cannam@167 237 }
cannam@167 238
cannam@167 239 static const tw_instr twinstr[] = {
cannam@167 240 {TW_FULL, 1, 8},
cannam@167 241 {TW_NEXT, 1, 0}
cannam@167 242 };
cannam@167 243
cannam@167 244 static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {60, 30, 22, 0} };
cannam@167 245
cannam@167 246 void X(codelet_hc2cfdft_8) (planner *p) {
cannam@167 247 X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
cannam@167 248 }
cannam@167 249 #else
cannam@167 250
cannam@167 251 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */
cannam@167 252
cannam@167 253 /*
cannam@167 254 * This function contains 82 FP additions, 44 FP multiplications,
cannam@167 255 * (or, 68 additions, 30 multiplications, 14 fused multiply/add),
cannam@167 256 * 39 stack variables, 2 constants, and 32 memory accesses
cannam@167 257 */
cannam@167 258 #include "rdft/scalar/hc2cf.h"
cannam@167 259
cannam@167 260 static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 261 {
cannam@167 262 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
cannam@167 263 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 264 {
cannam@167 265 INT m;
cannam@167 266 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@167 267 E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP;
cannam@167 268 E T16, TU, T17, T1i, T1j;
cannam@167 269 {
cannam@167 270 E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To;
cannam@167 271 Tt = Ip[0];
cannam@167 272 Tu = Im[0];
cannam@167 273 TD = Tt + Tu;
cannam@167 274 Tz = Rm[0];
cannam@167 275 TA = Rp[0];
cannam@167 276 TB = Tz - TA;
cannam@167 277 {
cannam@167 278 E Tl, Tm, Tp, Tq;
cannam@167 279 Tl = Ip[WS(rs, 2)];
cannam@167 280 Tm = Im[WS(rs, 2)];
cannam@167 281 Tn = Tl - Tm;
cannam@167 282 TI = Tl + Tm;
cannam@167 283 Tp = Rp[WS(rs, 2)];
cannam@167 284 Tq = Rm[WS(rs, 2)];
cannam@167 285 Tr = Tp + Tq;
cannam@167 286 TG = Tp - Tq;
cannam@167 287 }
cannam@167 288 Tv = Tt - Tu;
cannam@167 289 TX = TA + Tz;
cannam@167 290 Tk = W[6];
cannam@167 291 To = W[7];
cannam@167 292 Ts = FNMS(To, Tr, Tk * Tn);
cannam@167 293 TY = FMA(Tk, Tr, To * Tn);
cannam@167 294 {
cannam@167 295 E Ty, TC, TF, TH;
cannam@167 296 Ty = W[0];
cannam@167 297 TC = W[1];
cannam@167 298 TE = FNMS(TC, TD, Ty * TB);
cannam@167 299 T1a = FMA(TC, TB, Ty * TD);
cannam@167 300 TF = W[8];
cannam@167 301 TH = W[9];
cannam@167 302 TJ = FMA(TF, TG, TH * TI);
cannam@167 303 T19 = FNMS(TH, TG, TF * TI);
cannam@167 304 }
cannam@167 305 T1l = TJ + TE;
cannam@167 306 T1m = T1a - T19;
cannam@167 307 }
cannam@167 308 {
cannam@167 309 E T4, TO, T8, TM, Td, TT, Th, TR;
cannam@167 310 {
cannam@167 311 E T2, T3, T6, T7;
cannam@167 312 T2 = Ip[WS(rs, 1)];
cannam@167 313 T3 = Im[WS(rs, 1)];
cannam@167 314 T4 = T2 - T3;
cannam@167 315 TO = T2 + T3;
cannam@167 316 T6 = Rp[WS(rs, 1)];
cannam@167 317 T7 = Rm[WS(rs, 1)];
cannam@167 318 T8 = T6 + T7;
cannam@167 319 TM = T6 - T7;
cannam@167 320 }
cannam@167 321 {
cannam@167 322 E Tb, Tc, Tf, Tg;
cannam@167 323 Tb = Ip[WS(rs, 3)];
cannam@167 324 Tc = Im[WS(rs, 3)];
cannam@167 325 Td = Tb - Tc;
cannam@167 326 TT = Tb + Tc;
cannam@167 327 Tf = Rp[WS(rs, 3)];
cannam@167 328 Tg = Rm[WS(rs, 3)];
cannam@167 329 Th = Tf + Tg;
cannam@167 330 TR = Tf - Tg;
cannam@167 331 }
cannam@167 332 {
cannam@167 333 E T1, T5, Ta, Te;
cannam@167 334 T1 = W[2];
cannam@167 335 T5 = W[3];
cannam@167 336 T9 = FNMS(T5, T8, T1 * T4);
cannam@167 337 T10 = FMA(T1, T8, T5 * T4);
cannam@167 338 Ta = W[10];
cannam@167 339 Te = W[11];
cannam@167 340 Ti = FNMS(Te, Th, Ta * Td);
cannam@167 341 T11 = FMA(Ta, Th, Te * Td);
cannam@167 342 {
cannam@167 343 E TL, TN, TQ, TS;
cannam@167 344 TL = W[4];
cannam@167 345 TN = W[5];
cannam@167 346 TP = FMA(TL, TM, TN * TO);
cannam@167 347 T16 = FNMS(TN, TM, TL * TO);
cannam@167 348 TQ = W[12];
cannam@167 349 TS = W[13];
cannam@167 350 TU = FMA(TQ, TR, TS * TT);
cannam@167 351 T17 = FNMS(TS, TR, TQ * TT);
cannam@167 352 }
cannam@167 353 T1i = T17 - T16;
cannam@167 354 T1j = TP - TU;
cannam@167 355 }
cannam@167 356 }
cannam@167 357 {
cannam@167 358 E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x;
cannam@167 359 {
cannam@167 360 E T1f, T1g, T1u, T1v;
cannam@167 361 T1f = Tv - Ts;
cannam@167 362 T1g = T10 - T11;
cannam@167 363 T1h = KP500000000 * (T1f - T1g);
cannam@167 364 T1t = KP500000000 * (T1g + T1f);
cannam@167 365 T1u = T1i - T1j;
cannam@167 366 T1v = T1l + T1m;
cannam@167 367 T1w = KP353553390 * (T1u - T1v);
cannam@167 368 T1y = KP353553390 * (T1u + T1v);
cannam@167 369 }
cannam@167 370 {
cannam@167 371 E T1k, T1n, T1p, T1q;
cannam@167 372 T1k = T1i + T1j;
cannam@167 373 T1n = T1l - T1m;
cannam@167 374 T1o = KP353553390 * (T1k + T1n);
cannam@167 375 T1s = KP353553390 * (T1n - T1k);
cannam@167 376 T1p = TX - TY;
cannam@167 377 T1q = T9 - Ti;
cannam@167 378 T1r = KP500000000 * (T1p - T1q);
cannam@167 379 T1x = KP500000000 * (T1p + T1q);
cannam@167 380 }
cannam@167 381 Ip[WS(rs, 1)] = T1h + T1o;
cannam@167 382 Rp[WS(rs, 1)] = T1x + T1y;
cannam@167 383 Im[WS(rs, 2)] = T1o - T1h;
cannam@167 384 Rm[WS(rs, 2)] = T1x - T1y;
cannam@167 385 Rm[0] = T1r - T1s;
cannam@167 386 Im[0] = T1w - T1t;
cannam@167 387 Rp[WS(rs, 3)] = T1r + T1s;
cannam@167 388 Ip[WS(rs, 3)] = T1t + T1w;
cannam@167 389 }
cannam@167 390 {
cannam@167 391 E Tx, T15, T1c, T1e, TW, T14, T13, T1d;
cannam@167 392 {
cannam@167 393 E Tj, Tw, T18, T1b;
cannam@167 394 Tj = T9 + Ti;
cannam@167 395 Tw = Ts + Tv;
cannam@167 396 Tx = Tj + Tw;
cannam@167 397 T15 = Tw - Tj;
cannam@167 398 T18 = T16 + T17;
cannam@167 399 T1b = T19 + T1a;
cannam@167 400 T1c = T18 - T1b;
cannam@167 401 T1e = T18 + T1b;
cannam@167 402 }
cannam@167 403 {
cannam@167 404 E TK, TV, TZ, T12;
cannam@167 405 TK = TE - TJ;
cannam@167 406 TV = TP + TU;
cannam@167 407 TW = TK - TV;
cannam@167 408 T14 = TV + TK;
cannam@167 409 TZ = TX + TY;
cannam@167 410 T12 = T10 + T11;
cannam@167 411 T13 = TZ - T12;
cannam@167 412 T1d = TZ + T12;
cannam@167 413 }
cannam@167 414 Ip[0] = KP500000000 * (Tx + TW);
cannam@167 415 Rp[0] = KP500000000 * (T1d + T1e);
cannam@167 416 Im[WS(rs, 3)] = KP500000000 * (TW - Tx);
cannam@167 417 Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e);
cannam@167 418 Rm[WS(rs, 1)] = KP500000000 * (T13 - T14);
cannam@167 419 Im[WS(rs, 1)] = KP500000000 * (T1c - T15);
cannam@167 420 Rp[WS(rs, 2)] = KP500000000 * (T13 + T14);
cannam@167 421 Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c);
cannam@167 422 }
cannam@167 423 }
cannam@167 424 }
cannam@167 425 }
cannam@167 426
cannam@167 427 static const tw_instr twinstr[] = {
cannam@167 428 {TW_FULL, 1, 8},
cannam@167 429 {TW_NEXT, 1, 0}
cannam@167 430 };
cannam@167 431
cannam@167 432 static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {68, 30, 14, 0} };
cannam@167 433
cannam@167 434 void X(codelet_hc2cfdft_8) (planner *p) {
cannam@167 435 X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);
cannam@167 436 }
cannam@167 437 #endif