annotate src/fftw-3.3.8/rdft/scalar/r2cf/hc2cf_6.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:06:55 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cf_6 -include rdft/scalar/hc2cf.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 46 FP additions, 32 FP multiplications,
cannam@167 32 * (or, 24 additions, 10 multiplications, 22 fused multiply/add),
cannam@167 33 * 31 stack variables, 2 constants, and 24 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/scalar/hc2cf.h"
cannam@167 36
cannam@167 37 static void hc2cf_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 44 E T1, TX, T7, TW, Tl, TS, TB, TJ, Ty, TR, TC, TO;
cannam@167 45 T1 = Rp[0];
cannam@167 46 TX = Rm[0];
cannam@167 47 {
cannam@167 48 E T3, T6, T4, TV, T2, T5;
cannam@167 49 T3 = Ip[WS(rs, 1)];
cannam@167 50 T6 = Im[WS(rs, 1)];
cannam@167 51 T2 = W[4];
cannam@167 52 T4 = T2 * T3;
cannam@167 53 TV = T2 * T6;
cannam@167 54 T5 = W[5];
cannam@167 55 T7 = FMA(T5, T6, T4);
cannam@167 56 TW = FNMS(T5, T3, TV);
cannam@167 57 }
cannam@167 58 {
cannam@167 59 E Ta, Td, Tb, TF, Tg, Tj, Th, TH, T9, Tf;
cannam@167 60 Ta = Rp[WS(rs, 1)];
cannam@167 61 Td = Rm[WS(rs, 1)];
cannam@167 62 T9 = W[2];
cannam@167 63 Tb = T9 * Ta;
cannam@167 64 TF = T9 * Td;
cannam@167 65 Tg = Ip[WS(rs, 2)];
cannam@167 66 Tj = Im[WS(rs, 2)];
cannam@167 67 Tf = W[8];
cannam@167 68 Th = Tf * Tg;
cannam@167 69 TH = Tf * Tj;
cannam@167 70 {
cannam@167 71 E Te, TG, Tk, TI, Tc, Ti;
cannam@167 72 Tc = W[3];
cannam@167 73 Te = FMA(Tc, Td, Tb);
cannam@167 74 TG = FNMS(Tc, Ta, TF);
cannam@167 75 Ti = W[9];
cannam@167 76 Tk = FMA(Ti, Tj, Th);
cannam@167 77 TI = FNMS(Ti, Tg, TH);
cannam@167 78 Tl = Te - Tk;
cannam@167 79 TS = TI - TG;
cannam@167 80 TB = Te + Tk;
cannam@167 81 TJ = TG + TI;
cannam@167 82 }
cannam@167 83 }
cannam@167 84 {
cannam@167 85 E Tn, Tq, To, TK, Tt, Tw, Tu, TM, Tm, Ts;
cannam@167 86 Tn = Rp[WS(rs, 2)];
cannam@167 87 Tq = Rm[WS(rs, 2)];
cannam@167 88 Tm = W[6];
cannam@167 89 To = Tm * Tn;
cannam@167 90 TK = Tm * Tq;
cannam@167 91 Tt = Ip[0];
cannam@167 92 Tw = Im[0];
cannam@167 93 Ts = W[0];
cannam@167 94 Tu = Ts * Tt;
cannam@167 95 TM = Ts * Tw;
cannam@167 96 {
cannam@167 97 E Tr, TL, Tx, TN, Tp, Tv;
cannam@167 98 Tp = W[7];
cannam@167 99 Tr = FMA(Tp, Tq, To);
cannam@167 100 TL = FNMS(Tp, Tn, TK);
cannam@167 101 Tv = W[1];
cannam@167 102 Tx = FMA(Tv, Tw, Tu);
cannam@167 103 TN = FNMS(Tv, Tt, TM);
cannam@167 104 Ty = Tr - Tx;
cannam@167 105 TR = TN - TL;
cannam@167 106 TC = Tr + Tx;
cannam@167 107 TO = TL + TN;
cannam@167 108 }
cannam@167 109 }
cannam@167 110 {
cannam@167 111 E TT, T8, Tz, TQ;
cannam@167 112 TT = TR - TS;
cannam@167 113 T8 = T1 - T7;
cannam@167 114 Tz = Tl + Ty;
cannam@167 115 TQ = FNMS(KP500000000, Tz, T8);
cannam@167 116 Rm[WS(rs, 2)] = T8 + Tz;
cannam@167 117 Rp[WS(rs, 1)] = FMA(KP866025403, TT, TQ);
cannam@167 118 Rm[0] = FNMS(KP866025403, TT, TQ);
cannam@167 119 }
cannam@167 120 {
cannam@167 121 E T14, T11, T12, T13;
cannam@167 122 T14 = Ty - Tl;
cannam@167 123 T11 = TS + TR;
cannam@167 124 T12 = TX - TW;
cannam@167 125 T13 = FMA(KP500000000, T11, T12);
cannam@167 126 Im[WS(rs, 2)] = T11 - T12;
cannam@167 127 Ip[WS(rs, 1)] = FMA(KP866025403, T14, T13);
cannam@167 128 Im[0] = FMS(KP866025403, T14, T13);
cannam@167 129 }
cannam@167 130 {
cannam@167 131 E TP, TA, TD, TE;
cannam@167 132 TP = TJ - TO;
cannam@167 133 TA = T1 + T7;
cannam@167 134 TD = TB + TC;
cannam@167 135 TE = FNMS(KP500000000, TD, TA);
cannam@167 136 Rp[0] = TA + TD;
cannam@167 137 Rm[WS(rs, 1)] = FMA(KP866025403, TP, TE);
cannam@167 138 Rp[WS(rs, 2)] = FNMS(KP866025403, TP, TE);
cannam@167 139 }
cannam@167 140 {
cannam@167 141 E T10, TU, TY, TZ;
cannam@167 142 T10 = TB - TC;
cannam@167 143 TU = TJ + TO;
cannam@167 144 TY = TW + TX;
cannam@167 145 TZ = FNMS(KP500000000, TU, TY);
cannam@167 146 Ip[0] = TU + TY;
cannam@167 147 Ip[WS(rs, 2)] = FMA(KP866025403, T10, TZ);
cannam@167 148 Im[WS(rs, 1)] = FMS(KP866025403, T10, TZ);
cannam@167 149 }
cannam@167 150 }
cannam@167 151 }
cannam@167 152 }
cannam@167 153
cannam@167 154 static const tw_instr twinstr[] = {
cannam@167 155 {TW_FULL, 1, 6},
cannam@167 156 {TW_NEXT, 1, 0}
cannam@167 157 };
cannam@167 158
cannam@167 159 static const hc2c_desc desc = { 6, "hc2cf_6", twinstr, &GENUS, {24, 10, 22, 0} };
cannam@167 160
cannam@167 161 void X(codelet_hc2cf_6) (planner *p) {
cannam@167 162 X(khc2c_register) (p, hc2cf_6, &desc, HC2C_VIA_RDFT);
cannam@167 163 }
cannam@167 164 #else
cannam@167 165
cannam@167 166 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cf_6 -include rdft/scalar/hc2cf.h */
cannam@167 167
cannam@167 168 /*
cannam@167 169 * This function contains 46 FP additions, 28 FP multiplications,
cannam@167 170 * (or, 32 additions, 14 multiplications, 14 fused multiply/add),
cannam@167 171 * 23 stack variables, 2 constants, and 24 memory accesses
cannam@167 172 */
cannam@167 173 #include "rdft/scalar/hc2cf.h"
cannam@167 174
cannam@167 175 static void hc2cf_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 176 {
cannam@167 177 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 178 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 179 {
cannam@167 180 INT m;
cannam@167 181 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 182 E T7, TS, Tv, TO, Tt, TJ, Tx, TF, Ti, TI, Tw, TC;
cannam@167 183 {
cannam@167 184 E T1, TN, T6, TM;
cannam@167 185 T1 = Rp[0];
cannam@167 186 TN = Rm[0];
cannam@167 187 {
cannam@167 188 E T3, T5, T2, T4;
cannam@167 189 T3 = Ip[WS(rs, 1)];
cannam@167 190 T5 = Im[WS(rs, 1)];
cannam@167 191 T2 = W[4];
cannam@167 192 T4 = W[5];
cannam@167 193 T6 = FMA(T2, T3, T4 * T5);
cannam@167 194 TM = FNMS(T4, T3, T2 * T5);
cannam@167 195 }
cannam@167 196 T7 = T1 - T6;
cannam@167 197 TS = TN - TM;
cannam@167 198 Tv = T1 + T6;
cannam@167 199 TO = TM + TN;
cannam@167 200 }
cannam@167 201 {
cannam@167 202 E Tn, TD, Ts, TE;
cannam@167 203 {
cannam@167 204 E Tk, Tm, Tj, Tl;
cannam@167 205 Tk = Rp[WS(rs, 2)];
cannam@167 206 Tm = Rm[WS(rs, 2)];
cannam@167 207 Tj = W[6];
cannam@167 208 Tl = W[7];
cannam@167 209 Tn = FMA(Tj, Tk, Tl * Tm);
cannam@167 210 TD = FNMS(Tl, Tk, Tj * Tm);
cannam@167 211 }
cannam@167 212 {
cannam@167 213 E Tp, Tr, To, Tq;
cannam@167 214 Tp = Ip[0];
cannam@167 215 Tr = Im[0];
cannam@167 216 To = W[0];
cannam@167 217 Tq = W[1];
cannam@167 218 Ts = FMA(To, Tp, Tq * Tr);
cannam@167 219 TE = FNMS(Tq, Tp, To * Tr);
cannam@167 220 }
cannam@167 221 Tt = Tn - Ts;
cannam@167 222 TJ = TE - TD;
cannam@167 223 Tx = Tn + Ts;
cannam@167 224 TF = TD + TE;
cannam@167 225 }
cannam@167 226 {
cannam@167 227 E Tc, TA, Th, TB;
cannam@167 228 {
cannam@167 229 E T9, Tb, T8, Ta;
cannam@167 230 T9 = Rp[WS(rs, 1)];
cannam@167 231 Tb = Rm[WS(rs, 1)];
cannam@167 232 T8 = W[2];
cannam@167 233 Ta = W[3];
cannam@167 234 Tc = FMA(T8, T9, Ta * Tb);
cannam@167 235 TA = FNMS(Ta, T9, T8 * Tb);
cannam@167 236 }
cannam@167 237 {
cannam@167 238 E Te, Tg, Td, Tf;
cannam@167 239 Te = Ip[WS(rs, 2)];
cannam@167 240 Tg = Im[WS(rs, 2)];
cannam@167 241 Td = W[8];
cannam@167 242 Tf = W[9];
cannam@167 243 Th = FMA(Td, Te, Tf * Tg);
cannam@167 244 TB = FNMS(Tf, Te, Td * Tg);
cannam@167 245 }
cannam@167 246 Ti = Tc - Th;
cannam@167 247 TI = TA - TB;
cannam@167 248 Tw = Tc + Th;
cannam@167 249 TC = TA + TB;
cannam@167 250 }
cannam@167 251 {
cannam@167 252 E TK, Tu, TH, TT, TR, TU;
cannam@167 253 TK = KP866025403 * (TI + TJ);
cannam@167 254 Tu = Ti + Tt;
cannam@167 255 TH = FNMS(KP500000000, Tu, T7);
cannam@167 256 Rm[WS(rs, 2)] = T7 + Tu;
cannam@167 257 Rp[WS(rs, 1)] = TH + TK;
cannam@167 258 Rm[0] = TH - TK;
cannam@167 259 TT = KP866025403 * (Tt - Ti);
cannam@167 260 TR = TJ - TI;
cannam@167 261 TU = FMA(KP500000000, TR, TS);
cannam@167 262 Im[WS(rs, 2)] = TR - TS;
cannam@167 263 Ip[WS(rs, 1)] = TT + TU;
cannam@167 264 Im[0] = TT - TU;
cannam@167 265 }
cannam@167 266 {
cannam@167 267 E TG, Ty, Tz, TP, TL, TQ;
cannam@167 268 TG = KP866025403 * (TC - TF);
cannam@167 269 Ty = Tw + Tx;
cannam@167 270 Tz = FNMS(KP500000000, Ty, Tv);
cannam@167 271 Rp[0] = Tv + Ty;
cannam@167 272 Rm[WS(rs, 1)] = Tz + TG;
cannam@167 273 Rp[WS(rs, 2)] = Tz - TG;
cannam@167 274 TP = KP866025403 * (Tw - Tx);
cannam@167 275 TL = TC + TF;
cannam@167 276 TQ = FNMS(KP500000000, TL, TO);
cannam@167 277 Ip[0] = TL + TO;
cannam@167 278 Ip[WS(rs, 2)] = TP + TQ;
cannam@167 279 Im[WS(rs, 1)] = TP - TQ;
cannam@167 280 }
cannam@167 281 }
cannam@167 282 }
cannam@167 283 }
cannam@167 284
cannam@167 285 static const tw_instr twinstr[] = {
cannam@167 286 {TW_FULL, 1, 6},
cannam@167 287 {TW_NEXT, 1, 0}
cannam@167 288 };
cannam@167 289
cannam@167 290 static const hc2c_desc desc = { 6, "hc2cf_6", twinstr, &GENUS, {32, 14, 14, 0} };
cannam@167 291
cannam@167 292 void X(codelet_hc2cf_6) (planner *p) {
cannam@167 293 X(khc2c_register) (p, hc2cf_6, &desc, HC2C_VIA_RDFT);
cannam@167 294 }
cannam@167 295 #endif