annotate src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb_6.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:07:51 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 46 FP additions, 32 FP multiplications,
cannam@167 32 * (or, 24 additions, 10 multiplications, 22 fused multiply/add),
cannam@167 33 * 31 stack variables, 2 constants, and 24 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/scalar/hc2cb.h"
cannam@167 36
cannam@167 37 static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 44 E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG;
cannam@167 45 {
cannam@167 46 E Tb, Tc, Tj, TI, Tg, TH;
cannam@167 47 Tb = Ip[0];
cannam@167 48 Tc = Im[WS(rs, 2)];
cannam@167 49 Td = Tb - Tc;
cannam@167 50 {
cannam@167 51 E Th, Ti, Te, Tf;
cannam@167 52 Th = Ip[WS(rs, 1)];
cannam@167 53 Ti = Im[WS(rs, 1)];
cannam@167 54 Tj = Th - Ti;
cannam@167 55 TI = Th + Ti;
cannam@167 56 Te = Ip[WS(rs, 2)];
cannam@167 57 Tf = Im[0];
cannam@167 58 Tg = Te - Tf;
cannam@167 59 TH = Te + Tf;
cannam@167 60 }
cannam@167 61 Tn = Tj - Tg;
cannam@167 62 TO = TH - TI;
cannam@167 63 TJ = TH + TI;
cannam@167 64 TN = Tb + Tc;
cannam@167 65 Tk = Tg + Tj;
cannam@167 66 Tr = FNMS(KP500000000, Tk, Td);
cannam@167 67 }
cannam@167 68 {
cannam@167 69 E T9, TE, T6, TD, T1, T2;
cannam@167 70 T1 = Rp[0];
cannam@167 71 T2 = Rm[WS(rs, 2)];
cannam@167 72 T3 = T1 + T2;
cannam@167 73 TC = T1 - T2;
cannam@167 74 {
cannam@167 75 E T7, T8, T4, T5;
cannam@167 76 T7 = Rm[WS(rs, 1)];
cannam@167 77 T8 = Rp[WS(rs, 1)];
cannam@167 78 T9 = T7 + T8;
cannam@167 79 TE = T7 - T8;
cannam@167 80 T4 = Rp[WS(rs, 2)];
cannam@167 81 T5 = Rm[0];
cannam@167 82 T6 = T4 + T5;
cannam@167 83 TD = T4 - T5;
cannam@167 84 }
cannam@167 85 Ts = T6 - T9;
cannam@167 86 TQ = TD - TE;
cannam@167 87 Ta = T6 + T9;
cannam@167 88 Tm = FNMS(KP500000000, Ta, T3);
cannam@167 89 TF = TD + TE;
cannam@167 90 TG = FNMS(KP500000000, TF, TC);
cannam@167 91 }
cannam@167 92 Rp[0] = T3 + Ta;
cannam@167 93 Rm[0] = Td + Tk;
cannam@167 94 {
cannam@167 95 E To, Tt, Tp, Tu, Tl, Tq;
cannam@167 96 To = FNMS(KP866025403, Tn, Tm);
cannam@167 97 Tt = FNMS(KP866025403, Ts, Tr);
cannam@167 98 Tl = W[2];
cannam@167 99 Tp = Tl * To;
cannam@167 100 Tu = Tl * Tt;
cannam@167 101 Tq = W[3];
cannam@167 102 Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp);
cannam@167 103 Rm[WS(rs, 1)] = FMA(Tq, To, Tu);
cannam@167 104 }
cannam@167 105 {
cannam@167 106 E T13, TZ, T11, T12, T14, T10;
cannam@167 107 T13 = TN + TO;
cannam@167 108 T10 = TC + TF;
cannam@167 109 TZ = W[4];
cannam@167 110 T11 = TZ * T10;
cannam@167 111 T12 = W[5];
cannam@167 112 T14 = T12 * T10;
cannam@167 113 Ip[WS(rs, 1)] = FNMS(T12, T13, T11);
cannam@167 114 Im[WS(rs, 1)] = FMA(TZ, T13, T14);
cannam@167 115 }
cannam@167 116 {
cannam@167 117 E Tw, Tz, Tx, TA, Tv, Ty;
cannam@167 118 Tw = FMA(KP866025403, Tn, Tm);
cannam@167 119 Tz = FMA(KP866025403, Ts, Tr);
cannam@167 120 Tv = W[6];
cannam@167 121 Tx = Tv * Tw;
cannam@167 122 TA = Tv * Tz;
cannam@167 123 Ty = W[7];
cannam@167 124 Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx);
cannam@167 125 Rm[WS(rs, 2)] = FMA(Ty, Tw, TA);
cannam@167 126 }
cannam@167 127 {
cannam@167 128 E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK;
cannam@167 129 TP = FNMS(KP500000000, TO, TN);
cannam@167 130 TR = FMA(KP866025403, TQ, TP);
cannam@167 131 TX = FNMS(KP866025403, TQ, TP);
cannam@167 132 TU = FMA(KP866025403, TJ, TG);
cannam@167 133 TT = W[8];
cannam@167 134 TV = TT * TU;
cannam@167 135 TW = W[9];
cannam@167 136 TY = TW * TU;
cannam@167 137 TK = FNMS(KP866025403, TJ, TG);
cannam@167 138 TB = W[0];
cannam@167 139 TL = TB * TK;
cannam@167 140 TM = W[1];
cannam@167 141 TS = TM * TK;
cannam@167 142 Ip[0] = FNMS(TM, TR, TL);
cannam@167 143 Im[0] = FMA(TB, TR, TS);
cannam@167 144 Ip[WS(rs, 2)] = FNMS(TW, TX, TV);
cannam@167 145 Im[WS(rs, 2)] = FMA(TT, TX, TY);
cannam@167 146 }
cannam@167 147 }
cannam@167 148 }
cannam@167 149 }
cannam@167 150
cannam@167 151 static const tw_instr twinstr[] = {
cannam@167 152 {TW_FULL, 1, 6},
cannam@167 153 {TW_NEXT, 1, 0}
cannam@167 154 };
cannam@167 155
cannam@167 156 static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {24, 10, 22, 0} };
cannam@167 157
cannam@167 158 void X(codelet_hc2cb_6) (planner *p) {
cannam@167 159 X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT);
cannam@167 160 }
cannam@167 161 #else
cannam@167 162
cannam@167 163 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */
cannam@167 164
cannam@167 165 /*
cannam@167 166 * This function contains 46 FP additions, 28 FP multiplications,
cannam@167 167 * (or, 32 additions, 14 multiplications, 14 fused multiply/add),
cannam@167 168 * 25 stack variables, 2 constants, and 24 memory accesses
cannam@167 169 */
cannam@167 170 #include "rdft/scalar/hc2cb.h"
cannam@167 171
cannam@167 172 static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 173 {
cannam@167 174 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 175 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 176 {
cannam@167 177 INT m;
cannam@167 178 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 179 E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH;
cannam@167 180 {
cannam@167 181 E T1, T2, Tb, Tc;
cannam@167 182 T1 = Rp[0];
cannam@167 183 T2 = Rm[WS(rs, 2)];
cannam@167 184 T3 = T1 + T2;
cannam@167 185 Ty = T1 - T2;
cannam@167 186 Tb = Ip[0];
cannam@167 187 Tc = Im[WS(rs, 2)];
cannam@167 188 Td = Tb - Tc;
cannam@167 189 TE = Tb + Tc;
cannam@167 190 }
cannam@167 191 {
cannam@167 192 E T6, Tz, T9, TA;
cannam@167 193 {
cannam@167 194 E T4, T5, T7, T8;
cannam@167 195 T4 = Rp[WS(rs, 2)];
cannam@167 196 T5 = Rm[0];
cannam@167 197 T6 = T4 + T5;
cannam@167 198 Tz = T4 - T5;
cannam@167 199 T7 = Rm[WS(rs, 1)];
cannam@167 200 T8 = Rp[WS(rs, 1)];
cannam@167 201 T9 = T7 + T8;
cannam@167 202 TA = T7 - T8;
cannam@167 203 }
cannam@167 204 Ta = T6 + T9;
cannam@167 205 TO = KP866025403 * (Tz - TA);
cannam@167 206 Tr = KP866025403 * (T6 - T9);
cannam@167 207 TB = Tz + TA;
cannam@167 208 }
cannam@167 209 {
cannam@167 210 E Tg, TG, Tj, TF;
cannam@167 211 {
cannam@167 212 E Te, Tf, Th, Ti;
cannam@167 213 Te = Ip[WS(rs, 2)];
cannam@167 214 Tf = Im[0];
cannam@167 215 Tg = Te - Tf;
cannam@167 216 TG = Te + Tf;
cannam@167 217 Th = Ip[WS(rs, 1)];
cannam@167 218 Ti = Im[WS(rs, 1)];
cannam@167 219 Tj = Th - Ti;
cannam@167 220 TF = Th + Ti;
cannam@167 221 }
cannam@167 222 Tk = Tg + Tj;
cannam@167 223 TL = KP866025403 * (TG + TF);
cannam@167 224 Tn = KP866025403 * (Tj - Tg);
cannam@167 225 TH = TF - TG;
cannam@167 226 }
cannam@167 227 Rp[0] = T3 + Ta;
cannam@167 228 Rm[0] = Td + Tk;
cannam@167 229 {
cannam@167 230 E TC, TI, Tx, TD;
cannam@167 231 TC = Ty + TB;
cannam@167 232 TI = TE - TH;
cannam@167 233 Tx = W[4];
cannam@167 234 TD = W[5];
cannam@167 235 Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC);
cannam@167 236 Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI);
cannam@167 237 }
cannam@167 238 {
cannam@167 239 E To, Tu, Ts, Tw, Tm, Tq;
cannam@167 240 Tm = FNMS(KP500000000, Ta, T3);
cannam@167 241 To = Tm - Tn;
cannam@167 242 Tu = Tm + Tn;
cannam@167 243 Tq = FNMS(KP500000000, Tk, Td);
cannam@167 244 Ts = Tq - Tr;
cannam@167 245 Tw = Tr + Tq;
cannam@167 246 {
cannam@167 247 E Tl, Tp, Tt, Tv;
cannam@167 248 Tl = W[2];
cannam@167 249 Tp = W[3];
cannam@167 250 Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To);
cannam@167 251 Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To);
cannam@167 252 Tt = W[6];
cannam@167 253 Tv = W[7];
cannam@167 254 Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu);
cannam@167 255 Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu);
cannam@167 256 }
cannam@167 257 }
cannam@167 258 {
cannam@167 259 E TM, TS, TQ, TU, TK, TP;
cannam@167 260 TK = FNMS(KP500000000, TB, Ty);
cannam@167 261 TM = TK - TL;
cannam@167 262 TS = TK + TL;
cannam@167 263 TP = FMA(KP500000000, TH, TE);
cannam@167 264 TQ = TO + TP;
cannam@167 265 TU = TP - TO;
cannam@167 266 {
cannam@167 267 E TJ, TN, TR, TT;
cannam@167 268 TJ = W[0];
cannam@167 269 TN = W[1];
cannam@167 270 Ip[0] = FNMS(TN, TQ, TJ * TM);
cannam@167 271 Im[0] = FMA(TN, TM, TJ * TQ);
cannam@167 272 TR = W[8];
cannam@167 273 TT = W[9];
cannam@167 274 Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS);
cannam@167 275 Im[WS(rs, 2)] = FMA(TT, TS, TR * TU);
cannam@167 276 }
cannam@167 277 }
cannam@167 278 }
cannam@167 279 }
cannam@167 280 }
cannam@167 281
cannam@167 282 static const tw_instr twinstr[] = {
cannam@167 283 {TW_FULL, 1, 6},
cannam@167 284 {TW_NEXT, 1, 0}
cannam@167 285 };
cannam@167 286
cannam@167 287 static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {32, 14, 14, 0} };
cannam@167 288
cannam@167 289 void X(codelet_hc2cb_6) (planner *p) {
cannam@167 290 X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT);
cannam@167 291 }
cannam@167 292 #endif