annotate src/fftw-3.3.8/rdft/dht-rader.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 #include "rdft/rdft.h"
cannam@167 22
cannam@167 23 /*
cannam@167 24 * Compute DHTs of prime sizes using Rader's trick: turn them
cannam@167 25 * into convolutions of size n - 1, which we then perform via a pair
cannam@167 26 * of FFTs. (We can then do prime real FFTs via rdft-dht.c.)
cannam@167 27 *
cannam@167 28 * Optionally (determined by the "pad" field of the solver), we can
cannam@167 29 * perform the (cyclic) convolution by zero-padding to a size
cannam@167 30 * >= 2*(n-1) - 1. This is advantageous if n-1 has large prime factors.
cannam@167 31 *
cannam@167 32 */
cannam@167 33
cannam@167 34 typedef struct {
cannam@167 35 solver super;
cannam@167 36 int pad;
cannam@167 37 } S;
cannam@167 38
cannam@167 39 typedef struct {
cannam@167 40 plan_rdft super;
cannam@167 41
cannam@167 42 plan *cld1, *cld2;
cannam@167 43 R *omega;
cannam@167 44 INT n, npad, g, ginv;
cannam@167 45 INT is, os;
cannam@167 46 plan *cld_omega;
cannam@167 47 } P;
cannam@167 48
cannam@167 49 static rader_tl *omegas = 0;
cannam@167 50
cannam@167 51 /***************************************************************************/
cannam@167 52
cannam@167 53 /* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution
cannam@167 54 purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC.
cannam@167 55 This requires a few more operations, but allows us to share the same
cannam@167 56 plan/codelets for both Rader children. */
cannam@167 57 #define R2HC_ONLY_CONV 1
cannam@167 58
cannam@167 59 static void apply(const plan *ego_, R *I, R *O)
cannam@167 60 {
cannam@167 61 const P *ego = (const P *) ego_;
cannam@167 62 INT n = ego->n; /* prime */
cannam@167 63 INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */
cannam@167 64 INT is = ego->is, os;
cannam@167 65 INT k, gpower, g;
cannam@167 66 R *buf, *omega;
cannam@167 67 R r0;
cannam@167 68
cannam@167 69 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
cannam@167 70
cannam@167 71 /* First, permute the input, storing in buf: */
cannam@167 72 g = ego->g;
cannam@167 73 for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@167 74 buf[k] = I[gpower * is];
cannam@167 75 }
cannam@167 76 /* gpower == g^(n-1) mod n == 1 */;
cannam@167 77
cannam@167 78 A(n - 1 <= npad);
cannam@167 79 for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */
cannam@167 80 buf[k] = 0;
cannam@167 81
cannam@167 82 os = ego->os;
cannam@167 83
cannam@167 84 /* compute RDFT of buf, storing in buf (i.e., in-place): */
cannam@167 85 {
cannam@167 86 plan_rdft *cld = (plan_rdft *) ego->cld1;
cannam@167 87 cld->apply((plan *) cld, buf, buf);
cannam@167 88 }
cannam@167 89
cannam@167 90 /* set output DC component: */
cannam@167 91 O[0] = (r0 = I[0]) + buf[0];
cannam@167 92
cannam@167 93 /* now, multiply by omega: */
cannam@167 94 omega = ego->omega;
cannam@167 95 buf[0] *= omega[0];
cannam@167 96 for (k = 1; k < npad/2; ++k) {
cannam@167 97 E rB, iB, rW, iW, a, b;
cannam@167 98 rW = omega[k];
cannam@167 99 iW = omega[npad - k];
cannam@167 100 rB = buf[k];
cannam@167 101 iB = buf[npad - k];
cannam@167 102 a = rW * rB - iW * iB;
cannam@167 103 b = rW * iB + iW * rB;
cannam@167 104 #if R2HC_ONLY_CONV
cannam@167 105 buf[k] = a + b;
cannam@167 106 buf[npad - k] = a - b;
cannam@167 107 #else
cannam@167 108 buf[k] = a;
cannam@167 109 buf[npad - k] = b;
cannam@167 110 #endif
cannam@167 111 }
cannam@167 112 /* Nyquist component: */
cannam@167 113 A(k + k == npad); /* since npad is even */
cannam@167 114 buf[k] *= omega[k];
cannam@167 115
cannam@167 116 /* this will add input[0] to all of the outputs after the ifft */
cannam@167 117 buf[0] += r0;
cannam@167 118
cannam@167 119 /* inverse FFT: */
cannam@167 120 {
cannam@167 121 plan_rdft *cld = (plan_rdft *) ego->cld2;
cannam@167 122 cld->apply((plan *) cld, buf, buf);
cannam@167 123 }
cannam@167 124
cannam@167 125 /* do inverse permutation to unshuffle the output: */
cannam@167 126 A(gpower == 1);
cannam@167 127 #if R2HC_ONLY_CONV
cannam@167 128 O[os] = buf[0];
cannam@167 129 gpower = g = ego->ginv;
cannam@167 130 A(npad == n - 1 || npad/2 >= n - 1);
cannam@167 131 if (npad == n - 1) {
cannam@167 132 for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@167 133 O[gpower * os] = buf[k] + buf[npad - k];
cannam@167 134 }
cannam@167 135 O[gpower * os] = buf[k];
cannam@167 136 ++k, gpower = MULMOD(gpower, g, n);
cannam@167 137 for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@167 138 O[gpower * os] = buf[npad - k] - buf[k];
cannam@167 139 }
cannam@167 140 }
cannam@167 141 else {
cannam@167 142 for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@167 143 O[gpower * os] = buf[k] + buf[npad - k];
cannam@167 144 }
cannam@167 145 }
cannam@167 146 #else
cannam@167 147 g = ego->ginv;
cannam@167 148 for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@167 149 O[gpower * os] = buf[k];
cannam@167 150 }
cannam@167 151 #endif
cannam@167 152 A(gpower == 1);
cannam@167 153
cannam@167 154 X(ifree)(buf);
cannam@167 155 }
cannam@167 156
cannam@167 157 static R *mkomega(enum wakefulness wakefulness,
cannam@167 158 plan *p_, INT n, INT npad, INT ginv)
cannam@167 159 {
cannam@167 160 plan_rdft *p = (plan_rdft *) p_;
cannam@167 161 R *omega;
cannam@167 162 INT i, gpower;
cannam@167 163 trigreal scale;
cannam@167 164 triggen *t;
cannam@167 165
cannam@167 166 if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas)))
cannam@167 167 return omega;
cannam@167 168
cannam@167 169 omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES);
cannam@167 170
cannam@167 171 scale = npad; /* normalization for convolution */
cannam@167 172
cannam@167 173 t = X(mktriggen)(wakefulness, n);
cannam@167 174 for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
cannam@167 175 trigreal w[2];
cannam@167 176 t->cexpl(t, gpower, w);
cannam@167 177 omega[i] = (w[0] + w[1]) / scale;
cannam@167 178 }
cannam@167 179 X(triggen_destroy)(t);
cannam@167 180 A(gpower == 1);
cannam@167 181
cannam@167 182 A(npad == n - 1 || npad >= 2*(n - 1) - 1);
cannam@167 183
cannam@167 184 for (; i < npad; ++i)
cannam@167 185 omega[i] = K(0.0);
cannam@167 186 if (npad > n - 1)
cannam@167 187 for (i = 1; i < n-1; ++i)
cannam@167 188 omega[npad - i] = omega[n - 1 - i];
cannam@167 189
cannam@167 190 p->apply(p_, omega, omega);
cannam@167 191
cannam@167 192 X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas);
cannam@167 193 return omega;
cannam@167 194 }
cannam@167 195
cannam@167 196 static void free_omega(R *omega)
cannam@167 197 {
cannam@167 198 X(rader_tl_delete)(omega, &omegas);
cannam@167 199 }
cannam@167 200
cannam@167 201 /***************************************************************************/
cannam@167 202
cannam@167 203 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 204 {
cannam@167 205 P *ego = (P *) ego_;
cannam@167 206
cannam@167 207 X(plan_awake)(ego->cld1, wakefulness);
cannam@167 208 X(plan_awake)(ego->cld2, wakefulness);
cannam@167 209 X(plan_awake)(ego->cld_omega, wakefulness);
cannam@167 210
cannam@167 211 switch (wakefulness) {
cannam@167 212 case SLEEPY:
cannam@167 213 free_omega(ego->omega);
cannam@167 214 ego->omega = 0;
cannam@167 215 break;
cannam@167 216 default:
cannam@167 217 ego->g = X(find_generator)(ego->n);
cannam@167 218 ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
cannam@167 219 A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
cannam@167 220
cannam@167 221 A(!ego->omega);
cannam@167 222 ego->omega = mkomega(wakefulness,
cannam@167 223 ego->cld_omega,ego->n,ego->npad,ego->ginv);
cannam@167 224 break;
cannam@167 225 }
cannam@167 226 }
cannam@167 227
cannam@167 228 static void destroy(plan *ego_)
cannam@167 229 {
cannam@167 230 P *ego = (P *) ego_;
cannam@167 231 X(plan_destroy_internal)(ego->cld_omega);
cannam@167 232 X(plan_destroy_internal)(ego->cld2);
cannam@167 233 X(plan_destroy_internal)(ego->cld1);
cannam@167 234 }
cannam@167 235
cannam@167 236 static void print(const plan *ego_, printer *p)
cannam@167 237 {
cannam@167 238 const P *ego = (const P *) ego_;
cannam@167 239
cannam@167 240 p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)",
cannam@167 241 ego->n, ego->npad, ego->is, ego->os, ego->cld1);
cannam@167 242 if (ego->cld2 != ego->cld1)
cannam@167 243 p->print(p, "%(%p%)", ego->cld2);
cannam@167 244 if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
cannam@167 245 p->print(p, "%(%p%)", ego->cld_omega);
cannam@167 246 p->putchr(p, ')');
cannam@167 247 }
cannam@167 248
cannam@167 249 static int applicable(const solver *ego, const problem *p_, const planner *plnr)
cannam@167 250 {
cannam@167 251 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 252 UNUSED(ego);
cannam@167 253 return (1
cannam@167 254 && p->sz->rnk == 1
cannam@167 255 && p->vecsz->rnk == 0
cannam@167 256 && p->kind[0] == DHT
cannam@167 257 && X(is_prime)(p->sz->dims[0].n)
cannam@167 258 && p->sz->dims[0].n > 2
cannam@167 259 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
cannam@167 260 /* proclaim the solver SLOW if p-1 is not easily
cannam@167 261 factorizable. Unlike in the complex case where
cannam@167 262 Bluestein can solve the problem, in the DHT case we
cannam@167 263 may have no other choice */
cannam@167 264 && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
cannam@167 265 );
cannam@167 266 }
cannam@167 267
cannam@167 268 static INT choose_transform_size(INT minsz)
cannam@167 269 {
cannam@167 270 static const INT primes[] = { 2, 3, 5, 0 };
cannam@167 271 while (!X(factors_into)(minsz, primes) || minsz % 2)
cannam@167 272 ++minsz;
cannam@167 273 return minsz;
cannam@167 274 }
cannam@167 275
cannam@167 276 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 277 {
cannam@167 278 const S *ego = (const S *) ego_;
cannam@167 279 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 280 P *pln;
cannam@167 281 INT n, npad;
cannam@167 282 INT is, os;
cannam@167 283 plan *cld1 = (plan *) 0;
cannam@167 284 plan *cld2 = (plan *) 0;
cannam@167 285 plan *cld_omega = (plan *) 0;
cannam@167 286 R *buf = (R *) 0;
cannam@167 287 problem *cldp;
cannam@167 288
cannam@167 289 static const plan_adt padt = {
cannam@167 290 X(rdft_solve), awake, print, destroy
cannam@167 291 };
cannam@167 292
cannam@167 293 if (!applicable(ego_, p_, plnr))
cannam@167 294 return (plan *) 0;
cannam@167 295
cannam@167 296 n = p->sz->dims[0].n;
cannam@167 297 is = p->sz->dims[0].is;
cannam@167 298 os = p->sz->dims[0].os;
cannam@167 299
cannam@167 300 if (ego->pad)
cannam@167 301 npad = choose_transform_size(2 * (n - 1) - 1);
cannam@167 302 else
cannam@167 303 npad = n - 1;
cannam@167 304
cannam@167 305 /* initial allocation for the purpose of planning */
cannam@167 306 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
cannam@167 307
cannam@167 308 cld1 = X(mkplan_f_d)(plnr,
cannam@167 309 X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1),
cannam@167 310 X(mktensor_1d)(1, 0, 0),
cannam@167 311 buf, buf,
cannam@167 312 R2HC),
cannam@167 313 NO_SLOW, 0, 0);
cannam@167 314 if (!cld1) goto nada;
cannam@167 315
cannam@167 316 cldp =
cannam@167 317 X(mkproblem_rdft_1_d)(
cannam@167 318 X(mktensor_1d)(npad, 1, 1),
cannam@167 319 X(mktensor_1d)(1, 0, 0),
cannam@167 320 buf, buf,
cannam@167 321 #if R2HC_ONLY_CONV
cannam@167 322 R2HC
cannam@167 323 #else
cannam@167 324 HC2R
cannam@167 325 #endif
cannam@167 326 );
cannam@167 327 if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0)))
cannam@167 328 goto nada;
cannam@167 329
cannam@167 330 /* plan for omega */
cannam@167 331 cld_omega = X(mkplan_f_d)(plnr,
cannam@167 332 X(mkproblem_rdft_1_d)(
cannam@167 333 X(mktensor_1d)(npad, 1, 1),
cannam@167 334 X(mktensor_1d)(1, 0, 0),
cannam@167 335 buf, buf, R2HC),
cannam@167 336 NO_SLOW, ESTIMATE, 0);
cannam@167 337 if (!cld_omega) goto nada;
cannam@167 338
cannam@167 339 /* deallocate buffers; let awake() or apply() allocate them for real */
cannam@167 340 X(ifree)(buf);
cannam@167 341 buf = 0;
cannam@167 342
cannam@167 343 pln = MKPLAN_RDFT(P, &padt, apply);
cannam@167 344 pln->cld1 = cld1;
cannam@167 345 pln->cld2 = cld2;
cannam@167 346 pln->cld_omega = cld_omega;
cannam@167 347 pln->omega = 0;
cannam@167 348 pln->n = n;
cannam@167 349 pln->npad = npad;
cannam@167 350 pln->is = is;
cannam@167 351 pln->os = os;
cannam@167 352
cannam@167 353 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
cannam@167 354 pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad;
cannam@167 355 pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad;
cannam@167 356 pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad;
cannam@167 357 #if R2HC_ONLY_CONV
cannam@167 358 pln->super.super.ops.other += n-2 - ego->pad;
cannam@167 359 pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad;
cannam@167 360 #endif
cannam@167 361
cannam@167 362 return &(pln->super.super);
cannam@167 363
cannam@167 364 nada:
cannam@167 365 X(ifree0)(buf);
cannam@167 366 X(plan_destroy_internal)(cld_omega);
cannam@167 367 X(plan_destroy_internal)(cld2);
cannam@167 368 X(plan_destroy_internal)(cld1);
cannam@167 369 return 0;
cannam@167 370 }
cannam@167 371
cannam@167 372 /* constructors */
cannam@167 373
cannam@167 374 static solver *mksolver(int pad)
cannam@167 375 {
cannam@167 376 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 377 S *slv = MKSOLVER(S, &sadt);
cannam@167 378 slv->pad = pad;
cannam@167 379 return &(slv->super);
cannam@167 380 }
cannam@167 381
cannam@167 382 void X(dht_rader_register)(planner *p)
cannam@167 383 {
cannam@167 384 REGISTER_SOLVER(p, mksolver(0));
cannam@167 385 REGISTER_SOLVER(p, mksolver(1));
cannam@167 386 }