annotate src/fftw-3.3.8/mpi/api.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 #include "api/api.h"
Chris@82 22 #include "fftw3-mpi.h"
Chris@82 23 #include "ifftw-mpi.h"
Chris@82 24 #include "mpi-transpose.h"
Chris@82 25 #include "mpi-dft.h"
Chris@82 26 #include "mpi-rdft.h"
Chris@82 27 #include "mpi-rdft2.h"
Chris@82 28
Chris@82 29 /* Convert API flags to internal MPI flags. */
Chris@82 30 #define MPI_FLAGS(f) ((f) >> 27)
Chris@82 31
Chris@82 32 /*************************************************************************/
Chris@82 33
Chris@82 34 static int mpi_inited = 0;
Chris@82 35
Chris@82 36 static MPI_Comm problem_comm(const problem *p) {
Chris@82 37 switch (p->adt->problem_kind) {
Chris@82 38 case PROBLEM_MPI_DFT:
Chris@82 39 return ((const problem_mpi_dft *) p)->comm;
Chris@82 40 case PROBLEM_MPI_RDFT:
Chris@82 41 return ((const problem_mpi_rdft *) p)->comm;
Chris@82 42 case PROBLEM_MPI_RDFT2:
Chris@82 43 return ((const problem_mpi_rdft2 *) p)->comm;
Chris@82 44 case PROBLEM_MPI_TRANSPOSE:
Chris@82 45 return ((const problem_mpi_transpose *) p)->comm;
Chris@82 46 default:
Chris@82 47 return MPI_COMM_NULL;
Chris@82 48 }
Chris@82 49 }
Chris@82 50
Chris@82 51 /* used to synchronize cost measurements (timing or estimation)
Chris@82 52 across all processes for an MPI problem, which is critical to
Chris@82 53 ensure that all processes decide to use the same MPI plans
Chris@82 54 (whereas serial plans need not be syncronized). */
Chris@82 55 static double cost_hook(const problem *p, double t, cost_kind k)
Chris@82 56 {
Chris@82 57 MPI_Comm comm = problem_comm(p);
Chris@82 58 double tsum;
Chris@82 59 if (comm == MPI_COMM_NULL) return t;
Chris@82 60 MPI_Allreduce(&t, &tsum, 1, MPI_DOUBLE,
Chris@82 61 k == COST_SUM ? MPI_SUM : MPI_MAX, comm);
Chris@82 62 return tsum;
Chris@82 63 }
Chris@82 64
Chris@82 65 /* Used to reject wisdom that is not in sync across all processes
Chris@82 66 for an MPI problem, which is critical to ensure that all processes
Chris@82 67 decide to use the same MPI plans. (Even though costs are synchronized,
Chris@82 68 above, out-of-sync wisdom may result from plans being produced
Chris@82 69 by communicators that do not span all processes, either from a
Chris@82 70 user-specified communicator or e.g. from transpose-recurse. */
Chris@82 71 static int wisdom_ok_hook(const problem *p, flags_t flags)
Chris@82 72 {
Chris@82 73 MPI_Comm comm = problem_comm(p);
Chris@82 74 int eq_me, eq_all;
Chris@82 75 /* unpack flags bitfield, since MPI communications may involve
Chris@82 76 byte-order changes and MPI cannot do this for bit fields */
Chris@82 77 #if SIZEOF_UNSIGNED_INT >= 4 /* must be big enough to hold 20-bit fields */
Chris@82 78 unsigned int f[5];
Chris@82 79 #else
Chris@82 80 unsigned long f[5]; /* at least 32 bits as per C standard */
Chris@82 81 #endif
Chris@82 82
Chris@82 83 if (comm == MPI_COMM_NULL) return 1; /* non-MPI wisdom is always ok */
Chris@82 84
Chris@82 85 if (XM(any_true)(0, comm)) return 0; /* some process had nowisdom_hook */
Chris@82 86
Chris@82 87 /* otherwise, check that the flags and solver index are identical
Chris@82 88 on all processes in this problem's communicator.
Chris@82 89
Chris@82 90 TO DO: possibly we can relax strict equality, but it is
Chris@82 91 critical to ensure that any flags which affect what plan is
Chris@82 92 created (and whether the solver is applicable) are the same,
Chris@82 93 e.g. DESTROY_INPUT, NO_UGLY, etcetera. (If the MPI algorithm
Chris@82 94 differs between processes, deadlocks/crashes generally result.) */
Chris@82 95 f[0] = flags.l;
Chris@82 96 f[1] = flags.hash_info;
Chris@82 97 f[2] = flags.timelimit_impatience;
Chris@82 98 f[3] = flags.u;
Chris@82 99 f[4] = flags.slvndx;
Chris@82 100 MPI_Bcast(f, 5,
Chris@82 101 SIZEOF_UNSIGNED_INT >= 4 ? MPI_UNSIGNED : MPI_UNSIGNED_LONG,
Chris@82 102 0, comm);
Chris@82 103 eq_me = f[0] == flags.l && f[1] == flags.hash_info
Chris@82 104 && f[2] == flags.timelimit_impatience
Chris@82 105 && f[3] == flags.u && f[4] == flags.slvndx;
Chris@82 106 MPI_Allreduce(&eq_me, &eq_all, 1, MPI_INT, MPI_LAND, comm);
Chris@82 107 return eq_all;
Chris@82 108 }
Chris@82 109
Chris@82 110 /* This hook is called when wisdom is not found. The any_true here
Chris@82 111 matches up with the any_true in wisdom_ok_hook, in order to handle
Chris@82 112 the case where some processes had wisdom (and called wisdom_ok_hook)
Chris@82 113 and some processes didn't have wisdom (and called nowisdom_hook). */
Chris@82 114 static void nowisdom_hook(const problem *p)
Chris@82 115 {
Chris@82 116 MPI_Comm comm = problem_comm(p);
Chris@82 117 if (comm == MPI_COMM_NULL) return; /* nothing to do for non-MPI p */
Chris@82 118 XM(any_true)(1, comm); /* signal nowisdom to any wisdom_ok_hook */
Chris@82 119 }
Chris@82 120
Chris@82 121 /* needed to synchronize planner bogosity flag, in case non-MPI problems
Chris@82 122 on a subset of processes encountered bogus wisdom */
Chris@82 123 static wisdom_state_t bogosity_hook(wisdom_state_t state, const problem *p)
Chris@82 124 {
Chris@82 125 MPI_Comm comm = problem_comm(p);
Chris@82 126 if (comm != MPI_COMM_NULL /* an MPI problem */
Chris@82 127 && XM(any_true)(state == WISDOM_IS_BOGUS, comm)) /* bogus somewhere */
Chris@82 128 return WISDOM_IS_BOGUS;
Chris@82 129 return state;
Chris@82 130 }
Chris@82 131
Chris@82 132 void XM(init)(void)
Chris@82 133 {
Chris@82 134 if (!mpi_inited) {
Chris@82 135 planner *plnr = X(the_planner)();
Chris@82 136 plnr->cost_hook = cost_hook;
Chris@82 137 plnr->wisdom_ok_hook = wisdom_ok_hook;
Chris@82 138 plnr->nowisdom_hook = nowisdom_hook;
Chris@82 139 plnr->bogosity_hook = bogosity_hook;
Chris@82 140 XM(conf_standard)(plnr);
Chris@82 141 mpi_inited = 1;
Chris@82 142 }
Chris@82 143 }
Chris@82 144
Chris@82 145 void XM(cleanup)(void)
Chris@82 146 {
Chris@82 147 X(cleanup)();
Chris@82 148 mpi_inited = 0;
Chris@82 149 }
Chris@82 150
Chris@82 151 /*************************************************************************/
Chris@82 152
Chris@82 153 static dtensor *mkdtensor_api(int rnk, const XM(ddim) *dims0)
Chris@82 154 {
Chris@82 155 dtensor *x = XM(mkdtensor)(rnk);
Chris@82 156 int i;
Chris@82 157 for (i = 0; i < rnk; ++i) {
Chris@82 158 x->dims[i].n = dims0[i].n;
Chris@82 159 x->dims[i].b[IB] = dims0[i].ib;
Chris@82 160 x->dims[i].b[OB] = dims0[i].ob;
Chris@82 161 }
Chris@82 162 return x;
Chris@82 163 }
Chris@82 164
Chris@82 165 static dtensor *default_sz(int rnk, const XM(ddim) *dims0, int n_pes,
Chris@82 166 int rdft2)
Chris@82 167 {
Chris@82 168 dtensor *sz = XM(mkdtensor)(rnk);
Chris@82 169 dtensor *sz0 = mkdtensor_api(rnk, dims0);
Chris@82 170 block_kind k;
Chris@82 171 int i;
Chris@82 172
Chris@82 173 for (i = 0; i < rnk; ++i)
Chris@82 174 sz->dims[i].n = dims0[i].n;
Chris@82 175
Chris@82 176 if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
Chris@82 177
Chris@82 178 for (i = 0; i < rnk; ++i) {
Chris@82 179 sz->dims[i].b[IB] = dims0[i].ib ? dims0[i].ib : sz->dims[i].n;
Chris@82 180 sz->dims[i].b[OB] = dims0[i].ob ? dims0[i].ob : sz->dims[i].n;
Chris@82 181 }
Chris@82 182
Chris@82 183 /* If we haven't used all of the processes yet, and some of the
Chris@82 184 block sizes weren't specified (i.e. 0), then set the
Chris@82 185 unspecified blocks so as to use as many processes as
Chris@82 186 possible with as few distributed dimensions as possible. */
Chris@82 187 FORALL_BLOCK_KIND(k) {
Chris@82 188 INT nb = XM(num_blocks_total)(sz, k);
Chris@82 189 INT np = n_pes / nb;
Chris@82 190 for (i = 0; i < rnk && np > 1; ++i)
Chris@82 191 if (!sz0->dims[i].b[k]) {
Chris@82 192 sz->dims[i].b[k] = XM(default_block)(sz->dims[i].n, np);
Chris@82 193 nb *= XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[k]);
Chris@82 194 np = n_pes / nb;
Chris@82 195 }
Chris@82 196 }
Chris@82 197
Chris@82 198 if (rdft2) sz->dims[rnk-1].n = dims0[rnk-1].n;
Chris@82 199
Chris@82 200 /* punt for 1d prime */
Chris@82 201 if (rnk == 1 && X(is_prime)(sz->dims[0].n))
Chris@82 202 sz->dims[0].b[IB] = sz->dims[0].b[OB] = sz->dims[0].n;
Chris@82 203
Chris@82 204 XM(dtensor_destroy)(sz0);
Chris@82 205 sz0 = XM(dtensor_canonical)(sz, 0);
Chris@82 206 XM(dtensor_destroy)(sz);
Chris@82 207 return sz0;
Chris@82 208 }
Chris@82 209
Chris@82 210 /* allocate simple local (serial) dims array corresponding to n[rnk] */
Chris@82 211 static XM(ddim) *simple_dims(int rnk, const ptrdiff_t *n)
Chris@82 212 {
Chris@82 213 XM(ddim) *dims = (XM(ddim) *) MALLOC(sizeof(XM(ddim)) * rnk,
Chris@82 214 TENSORS);
Chris@82 215 int i;
Chris@82 216 for (i = 0; i < rnk; ++i)
Chris@82 217 dims[i].n = dims[i].ib = dims[i].ob = n[i];
Chris@82 218 return dims;
Chris@82 219 }
Chris@82 220
Chris@82 221 /*************************************************************************/
Chris@82 222
Chris@82 223 static void local_size(int my_pe, const dtensor *sz, block_kind k,
Chris@82 224 ptrdiff_t *local_n, ptrdiff_t *local_start)
Chris@82 225 {
Chris@82 226 int i;
Chris@82 227 if (my_pe >= XM(num_blocks_total)(sz, k))
Chris@82 228 for (i = 0; i < sz->rnk; ++i)
Chris@82 229 local_n[i] = local_start[i] = 0;
Chris@82 230 else {
Chris@82 231 XM(block_coords)(sz, k, my_pe, local_start);
Chris@82 232 for (i = 0; i < sz->rnk; ++i) {
Chris@82 233 local_n[i] = XM(block)(sz->dims[i].n, sz->dims[i].b[k],
Chris@82 234 local_start[i]);
Chris@82 235 local_start[i] *= sz->dims[i].b[k];
Chris@82 236 }
Chris@82 237 }
Chris@82 238 }
Chris@82 239
Chris@82 240 static INT prod(int rnk, const ptrdiff_t *local_n)
Chris@82 241 {
Chris@82 242 int i;
Chris@82 243 INT N = 1;
Chris@82 244 for (i = 0; i < rnk; ++i) N *= local_n[i];
Chris@82 245 return N;
Chris@82 246 }
Chris@82 247
Chris@82 248 ptrdiff_t XM(local_size_guru)(int rnk, const XM(ddim) *dims0,
Chris@82 249 ptrdiff_t howmany, MPI_Comm comm,
Chris@82 250 ptrdiff_t *local_n_in,
Chris@82 251 ptrdiff_t *local_start_in,
Chris@82 252 ptrdiff_t *local_n_out,
Chris@82 253 ptrdiff_t *local_start_out,
Chris@82 254 int sign, unsigned flags)
Chris@82 255 {
Chris@82 256 INT N;
Chris@82 257 int my_pe, n_pes, i;
Chris@82 258 dtensor *sz;
Chris@82 259
Chris@82 260 if (rnk == 0)
Chris@82 261 return howmany;
Chris@82 262
Chris@82 263 MPI_Comm_rank(comm, &my_pe);
Chris@82 264 MPI_Comm_size(comm, &n_pes);
Chris@82 265 sz = default_sz(rnk, dims0, n_pes, 0);
Chris@82 266
Chris@82 267 /* Now, we must figure out how much local space the user should
Chris@82 268 allocate (or at least an upper bound). This depends strongly
Chris@82 269 on the exact algorithms we employ...ugh! FIXME: get this info
Chris@82 270 from the solvers somehow? */
Chris@82 271 N = 1; /* never return zero allocation size */
Chris@82 272 if (rnk > 1 && XM(is_block1d)(sz, IB) && XM(is_block1d)(sz, OB)) {
Chris@82 273 INT Nafter;
Chris@82 274 ddim odims[2];
Chris@82 275
Chris@82 276 /* dft-rank-geq2-transposed */
Chris@82 277 odims[0] = sz->dims[0]; odims[1] = sz->dims[1]; /* save */
Chris@82 278 /* we may need extra space for transposed intermediate data */
Chris@82 279 for (i = 0; i < 2; ++i)
Chris@82 280 if (XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[IB]) == 1 &&
Chris@82 281 XM(num_blocks)(sz->dims[i].n, sz->dims[i].b[OB]) == 1) {
Chris@82 282 sz->dims[i].b[IB]
Chris@82 283 = XM(default_block)(sz->dims[i].n, n_pes);
Chris@82 284 sz->dims[1-i].b[IB] = sz->dims[1-i].n;
Chris@82 285 local_size(my_pe, sz, IB, local_n_in, local_start_in);
Chris@82 286 N = X(imax)(N, prod(rnk, local_n_in));
Chris@82 287 sz->dims[i] = odims[i];
Chris@82 288 sz->dims[1-i] = odims[1-i];
Chris@82 289 break;
Chris@82 290 }
Chris@82 291
Chris@82 292 /* dft-rank-geq2 */
Chris@82 293 Nafter = howmany;
Chris@82 294 for (i = 1; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
Chris@82 295 N = X(imax)(N, (sz->dims[0].n
Chris@82 296 * XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
Chris@82 297 my_pe) + howmany - 1) / howmany);
Chris@82 298
Chris@82 299 /* dft-rank-geq2 with dimensions swapped */
Chris@82 300 Nafter = howmany * sz->dims[0].n;
Chris@82 301 for (i = 2; i < sz->rnk; ++i) Nafter *= sz->dims[i].n;
Chris@82 302 N = X(imax)(N, (sz->dims[1].n
Chris@82 303 * XM(block)(Nafter, XM(default_block)(Nafter, n_pes),
Chris@82 304 my_pe) + howmany - 1) / howmany);
Chris@82 305 }
Chris@82 306 else if (rnk == 1) {
Chris@82 307 if (howmany >= n_pes && !MPI_FLAGS(flags)) { /* dft-rank1-bigvec */
Chris@82 308 ptrdiff_t n[2], start[2];
Chris@82 309 dtensor *sz2 = XM(mkdtensor)(2);
Chris@82 310 sz2->dims[0] = sz->dims[0];
Chris@82 311 sz2->dims[0].b[IB] = sz->dims[0].n;
Chris@82 312 sz2->dims[1].n = sz2->dims[1].b[OB] = howmany;
Chris@82 313 sz2->dims[1].b[IB] = XM(default_block)(howmany, n_pes);
Chris@82 314 local_size(my_pe, sz2, IB, n, start);
Chris@82 315 XM(dtensor_destroy)(sz2);
Chris@82 316 N = X(imax)(N, (prod(2, n) + howmany - 1) / howmany);
Chris@82 317 }
Chris@82 318 else { /* dft-rank1 */
Chris@82 319 INT r, m, rblock[2], mblock[2];
Chris@82 320
Chris@82 321 /* Since the 1d transforms are so different, we require
Chris@82 322 the user to call local_size_1d for this case. Ugh. */
Chris@82 323 CK(sign == FFTW_FORWARD || sign == FFTW_BACKWARD);
Chris@82 324
Chris@82 325 if ((r = XM(choose_radix)(sz->dims[0], n_pes, flags, sign,
Chris@82 326 rblock, mblock))) {
Chris@82 327 m = sz->dims[0].n / r;
Chris@82 328 if (flags & FFTW_MPI_SCRAMBLED_IN)
Chris@82 329 sz->dims[0].b[IB] = rblock[IB] * m;
Chris@82 330 else { /* !SCRAMBLED_IN */
Chris@82 331 sz->dims[0].b[IB] = r * mblock[IB];
Chris@82 332 N = X(imax)(N, rblock[IB] * m);
Chris@82 333 }
Chris@82 334 if (flags & FFTW_MPI_SCRAMBLED_OUT)
Chris@82 335 sz->dims[0].b[OB] = r * mblock[OB];
Chris@82 336 else { /* !SCRAMBLED_OUT */
Chris@82 337 N = X(imax)(N, r * mblock[OB]);
Chris@82 338 sz->dims[0].b[OB] = rblock[OB] * m;
Chris@82 339 }
Chris@82 340 }
Chris@82 341 }
Chris@82 342 }
Chris@82 343
Chris@82 344 local_size(my_pe, sz, IB, local_n_in, local_start_in);
Chris@82 345 local_size(my_pe, sz, OB, local_n_out, local_start_out);
Chris@82 346
Chris@82 347 /* at least, make sure we have enough space to store input & output */
Chris@82 348 N = X(imax)(N, X(imax)(prod(rnk, local_n_in), prod(rnk, local_n_out)));
Chris@82 349
Chris@82 350 XM(dtensor_destroy)(sz);
Chris@82 351 return N * howmany;
Chris@82 352 }
Chris@82 353
Chris@82 354 ptrdiff_t XM(local_size_many_transposed)(int rnk, const ptrdiff_t *n,
Chris@82 355 ptrdiff_t howmany,
Chris@82 356 ptrdiff_t xblock, ptrdiff_t yblock,
Chris@82 357 MPI_Comm comm,
Chris@82 358 ptrdiff_t *local_nx,
Chris@82 359 ptrdiff_t *local_x_start,
Chris@82 360 ptrdiff_t *local_ny,
Chris@82 361 ptrdiff_t *local_y_start)
Chris@82 362 {
Chris@82 363 ptrdiff_t N;
Chris@82 364 XM(ddim) *dims;
Chris@82 365 ptrdiff_t *local;
Chris@82 366
Chris@82 367 if (rnk == 0) {
Chris@82 368 *local_nx = *local_ny = 1;
Chris@82 369 *local_x_start = *local_y_start = 0;
Chris@82 370 return howmany;
Chris@82 371 }
Chris@82 372
Chris@82 373 dims = simple_dims(rnk, n);
Chris@82 374 local = (ptrdiff_t *) MALLOC(sizeof(ptrdiff_t) * rnk * 4, TENSORS);
Chris@82 375
Chris@82 376 /* default 1d block distribution, with transposed output
Chris@82 377 if yblock < n[1] */
Chris@82 378 dims[0].ib = xblock;
Chris@82 379 if (rnk > 1) {
Chris@82 380 if (yblock < n[1])
Chris@82 381 dims[1].ob = yblock;
Chris@82 382 else
Chris@82 383 dims[0].ob = xblock;
Chris@82 384 }
Chris@82 385 else
Chris@82 386 dims[0].ob = xblock; /* FIXME: 1d not really supported here
Chris@82 387 since we don't have flags/sign */
Chris@82 388
Chris@82 389 N = XM(local_size_guru)(rnk, dims, howmany, comm,
Chris@82 390 local, local + rnk,
Chris@82 391 local + 2*rnk, local + 3*rnk,
Chris@82 392 0, 0);
Chris@82 393 *local_nx = local[0];
Chris@82 394 *local_x_start = local[rnk];
Chris@82 395 if (rnk > 1) {
Chris@82 396 *local_ny = local[2*rnk + 1];
Chris@82 397 *local_y_start = local[3*rnk + 1];
Chris@82 398 }
Chris@82 399 else {
Chris@82 400 *local_ny = *local_nx;
Chris@82 401 *local_y_start = *local_x_start;
Chris@82 402 }
Chris@82 403 X(ifree)(local);
Chris@82 404 X(ifree)(dims);
Chris@82 405 return N;
Chris@82 406 }
Chris@82 407
Chris@82 408 ptrdiff_t XM(local_size_many)(int rnk, const ptrdiff_t *n,
Chris@82 409 ptrdiff_t howmany,
Chris@82 410 ptrdiff_t xblock,
Chris@82 411 MPI_Comm comm,
Chris@82 412 ptrdiff_t *local_nx,
Chris@82 413 ptrdiff_t *local_x_start)
Chris@82 414 {
Chris@82 415 ptrdiff_t local_ny, local_y_start;
Chris@82 416 return XM(local_size_many_transposed)(rnk, n, howmany,
Chris@82 417 xblock, rnk > 1
Chris@82 418 ? n[1] : FFTW_MPI_DEFAULT_BLOCK,
Chris@82 419 comm,
Chris@82 420 local_nx, local_x_start,
Chris@82 421 &local_ny, &local_y_start);
Chris@82 422 }
Chris@82 423
Chris@82 424
Chris@82 425 ptrdiff_t XM(local_size_transposed)(int rnk, const ptrdiff_t *n,
Chris@82 426 MPI_Comm comm,
Chris@82 427 ptrdiff_t *local_nx,
Chris@82 428 ptrdiff_t *local_x_start,
Chris@82 429 ptrdiff_t *local_ny,
Chris@82 430 ptrdiff_t *local_y_start)
Chris@82 431 {
Chris@82 432 return XM(local_size_many_transposed)(rnk, n, 1,
Chris@82 433 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 434 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 435 comm,
Chris@82 436 local_nx, local_x_start,
Chris@82 437 local_ny, local_y_start);
Chris@82 438 }
Chris@82 439
Chris@82 440 ptrdiff_t XM(local_size)(int rnk, const ptrdiff_t *n,
Chris@82 441 MPI_Comm comm,
Chris@82 442 ptrdiff_t *local_nx,
Chris@82 443 ptrdiff_t *local_x_start)
Chris@82 444 {
Chris@82 445 return XM(local_size_many)(rnk, n, 1, FFTW_MPI_DEFAULT_BLOCK, comm,
Chris@82 446 local_nx, local_x_start);
Chris@82 447 }
Chris@82 448
Chris@82 449 ptrdiff_t XM(local_size_many_1d)(ptrdiff_t nx, ptrdiff_t howmany,
Chris@82 450 MPI_Comm comm, int sign, unsigned flags,
Chris@82 451 ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
Chris@82 452 ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
Chris@82 453 {
Chris@82 454 XM(ddim) d;
Chris@82 455 d.n = nx;
Chris@82 456 d.ib = d.ob = FFTW_MPI_DEFAULT_BLOCK;
Chris@82 457 return XM(local_size_guru)(1, &d, howmany, comm,
Chris@82 458 local_nx, local_x_start,
Chris@82 459 local_ny, local_y_start, sign, flags);
Chris@82 460 }
Chris@82 461
Chris@82 462 ptrdiff_t XM(local_size_1d)(ptrdiff_t nx,
Chris@82 463 MPI_Comm comm, int sign, unsigned flags,
Chris@82 464 ptrdiff_t *local_nx, ptrdiff_t *local_x_start,
Chris@82 465 ptrdiff_t *local_ny, ptrdiff_t *local_y_start)
Chris@82 466 {
Chris@82 467 return XM(local_size_many_1d)(nx, 1, comm, sign, flags,
Chris@82 468 local_nx, local_x_start,
Chris@82 469 local_ny, local_y_start);
Chris@82 470 }
Chris@82 471
Chris@82 472 ptrdiff_t XM(local_size_2d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
Chris@82 473 MPI_Comm comm,
Chris@82 474 ptrdiff_t *local_nx,
Chris@82 475 ptrdiff_t *local_x_start,
Chris@82 476 ptrdiff_t *local_ny,
Chris@82 477 ptrdiff_t *local_y_start)
Chris@82 478 {
Chris@82 479 ptrdiff_t n[2];
Chris@82 480 n[0] = nx; n[1] = ny;
Chris@82 481 return XM(local_size_transposed)(2, n, comm,
Chris@82 482 local_nx, local_x_start,
Chris@82 483 local_ny, local_y_start);
Chris@82 484 }
Chris@82 485
Chris@82 486 ptrdiff_t XM(local_size_2d)(ptrdiff_t nx, ptrdiff_t ny, MPI_Comm comm,
Chris@82 487 ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
Chris@82 488 {
Chris@82 489 ptrdiff_t n[2];
Chris@82 490 n[0] = nx; n[1] = ny;
Chris@82 491 return XM(local_size)(2, n, comm, local_nx, local_x_start);
Chris@82 492 }
Chris@82 493
Chris@82 494 ptrdiff_t XM(local_size_3d_transposed)(ptrdiff_t nx, ptrdiff_t ny,
Chris@82 495 ptrdiff_t nz,
Chris@82 496 MPI_Comm comm,
Chris@82 497 ptrdiff_t *local_nx,
Chris@82 498 ptrdiff_t *local_x_start,
Chris@82 499 ptrdiff_t *local_ny,
Chris@82 500 ptrdiff_t *local_y_start)
Chris@82 501 {
Chris@82 502 ptrdiff_t n[3];
Chris@82 503 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@82 504 return XM(local_size_transposed)(3, n, comm,
Chris@82 505 local_nx, local_x_start,
Chris@82 506 local_ny, local_y_start);
Chris@82 507 }
Chris@82 508
Chris@82 509 ptrdiff_t XM(local_size_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@82 510 MPI_Comm comm,
Chris@82 511 ptrdiff_t *local_nx, ptrdiff_t *local_x_start)
Chris@82 512 {
Chris@82 513 ptrdiff_t n[3];
Chris@82 514 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@82 515 return XM(local_size)(3, n, comm, local_nx, local_x_start);
Chris@82 516 }
Chris@82 517
Chris@82 518 /*************************************************************************/
Chris@82 519 /* Transpose API */
Chris@82 520
Chris@82 521 X(plan) XM(plan_many_transpose)(ptrdiff_t nx, ptrdiff_t ny,
Chris@82 522 ptrdiff_t howmany,
Chris@82 523 ptrdiff_t xblock, ptrdiff_t yblock,
Chris@82 524 R *in, R *out,
Chris@82 525 MPI_Comm comm, unsigned flags)
Chris@82 526 {
Chris@82 527 int n_pes;
Chris@82 528 XM(init)();
Chris@82 529
Chris@82 530 if (howmany < 0 || xblock < 0 || yblock < 0 ||
Chris@82 531 nx <= 0 || ny <= 0) return 0;
Chris@82 532
Chris@82 533 MPI_Comm_size(comm, &n_pes);
Chris@82 534 if (!xblock) xblock = XM(default_block)(nx, n_pes);
Chris@82 535 if (!yblock) yblock = XM(default_block)(ny, n_pes);
Chris@82 536 if (n_pes < XM(num_blocks)(nx, xblock)
Chris@82 537 || n_pes < XM(num_blocks)(ny, yblock))
Chris@82 538 return 0;
Chris@82 539
Chris@82 540 return
Chris@82 541 X(mkapiplan)(FFTW_FORWARD, flags,
Chris@82 542 XM(mkproblem_transpose)(nx, ny, howmany,
Chris@82 543 in, out, xblock, yblock,
Chris@82 544 comm, MPI_FLAGS(flags)));
Chris@82 545 }
Chris@82 546
Chris@82 547 X(plan) XM(plan_transpose)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out,
Chris@82 548 MPI_Comm comm, unsigned flags)
Chris@82 549
Chris@82 550 {
Chris@82 551 return XM(plan_many_transpose)(nx, ny, 1,
Chris@82 552 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 553 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 554 in, out, comm, flags);
Chris@82 555 }
Chris@82 556
Chris@82 557 /*************************************************************************/
Chris@82 558 /* Complex DFT API */
Chris@82 559
Chris@82 560 X(plan) XM(plan_guru_dft)(int rnk, const XM(ddim) *dims0,
Chris@82 561 ptrdiff_t howmany,
Chris@82 562 C *in, C *out,
Chris@82 563 MPI_Comm comm, int sign, unsigned flags)
Chris@82 564 {
Chris@82 565 int n_pes, i;
Chris@82 566 dtensor *sz;
Chris@82 567
Chris@82 568 XM(init)();
Chris@82 569
Chris@82 570 if (howmany < 0 || rnk < 1) return 0;
Chris@82 571 for (i = 0; i < rnk; ++i)
Chris@82 572 if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
Chris@82 573 return 0;
Chris@82 574
Chris@82 575 MPI_Comm_size(comm, &n_pes);
Chris@82 576 sz = default_sz(rnk, dims0, n_pes, 0);
Chris@82 577
Chris@82 578 if (XM(num_blocks_total)(sz, IB) > n_pes
Chris@82 579 || XM(num_blocks_total)(sz, OB) > n_pes) {
Chris@82 580 XM(dtensor_destroy)(sz);
Chris@82 581 return 0;
Chris@82 582 }
Chris@82 583
Chris@82 584 return
Chris@82 585 X(mkapiplan)(sign, flags,
Chris@82 586 XM(mkproblem_dft_d)(sz, howmany,
Chris@82 587 (R *) in, (R *) out,
Chris@82 588 comm, sign,
Chris@82 589 MPI_FLAGS(flags)));
Chris@82 590 }
Chris@82 591
Chris@82 592 X(plan) XM(plan_many_dft)(int rnk, const ptrdiff_t *n,
Chris@82 593 ptrdiff_t howmany,
Chris@82 594 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@82 595 C *in, C *out,
Chris@82 596 MPI_Comm comm, int sign, unsigned flags)
Chris@82 597 {
Chris@82 598 XM(ddim) *dims = simple_dims(rnk, n);
Chris@82 599 X(plan) pln;
Chris@82 600
Chris@82 601 if (rnk == 1) {
Chris@82 602 dims[0].ib = iblock;
Chris@82 603 dims[0].ob = oblock;
Chris@82 604 }
Chris@82 605 else if (rnk > 1) {
Chris@82 606 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@82 607 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@82 608 }
Chris@82 609
Chris@82 610 pln = XM(plan_guru_dft)(rnk,dims,howmany, in,out, comm, sign, flags);
Chris@82 611 X(ifree)(dims);
Chris@82 612 return pln;
Chris@82 613 }
Chris@82 614
Chris@82 615 X(plan) XM(plan_dft)(int rnk, const ptrdiff_t *n, C *in, C *out,
Chris@82 616 MPI_Comm comm, int sign, unsigned flags)
Chris@82 617 {
Chris@82 618 return XM(plan_many_dft)(rnk, n, 1,
Chris@82 619 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 620 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 621 in, out, comm, sign, flags);
Chris@82 622 }
Chris@82 623
Chris@82 624 X(plan) XM(plan_dft_1d)(ptrdiff_t nx, C *in, C *out,
Chris@82 625 MPI_Comm comm, int sign, unsigned flags)
Chris@82 626 {
Chris@82 627 return XM(plan_dft)(1, &nx, in, out, comm, sign, flags);
Chris@82 628 }
Chris@82 629
Chris@82 630 X(plan) XM(plan_dft_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, C *out,
Chris@82 631 MPI_Comm comm, int sign, unsigned flags)
Chris@82 632 {
Chris@82 633 ptrdiff_t n[2];
Chris@82 634 n[0] = nx; n[1] = ny;
Chris@82 635 return XM(plan_dft)(2, n, in, out, comm, sign, flags);
Chris@82 636 }
Chris@82 637
Chris@82 638 X(plan) XM(plan_dft_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@82 639 C *in, C *out,
Chris@82 640 MPI_Comm comm, int sign, unsigned flags)
Chris@82 641 {
Chris@82 642 ptrdiff_t n[3];
Chris@82 643 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@82 644 return XM(plan_dft)(3, n, in, out, comm, sign, flags);
Chris@82 645 }
Chris@82 646
Chris@82 647 /*************************************************************************/
Chris@82 648 /* R2R API */
Chris@82 649
Chris@82 650 X(plan) XM(plan_guru_r2r)(int rnk, const XM(ddim) *dims0,
Chris@82 651 ptrdiff_t howmany,
Chris@82 652 R *in, R *out,
Chris@82 653 MPI_Comm comm, const X(r2r_kind) *kind,
Chris@82 654 unsigned flags)
Chris@82 655 {
Chris@82 656 int n_pes, i;
Chris@82 657 dtensor *sz;
Chris@82 658 rdft_kind *k;
Chris@82 659 X(plan) pln;
Chris@82 660
Chris@82 661 XM(init)();
Chris@82 662
Chris@82 663 if (howmany < 0 || rnk < 1) return 0;
Chris@82 664 for (i = 0; i < rnk; ++i)
Chris@82 665 if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
Chris@82 666 return 0;
Chris@82 667
Chris@82 668 k = X(map_r2r_kind)(rnk, kind);
Chris@82 669
Chris@82 670 MPI_Comm_size(comm, &n_pes);
Chris@82 671 sz = default_sz(rnk, dims0, n_pes, 0);
Chris@82 672
Chris@82 673 if (XM(num_blocks_total)(sz, IB) > n_pes
Chris@82 674 || XM(num_blocks_total)(sz, OB) > n_pes) {
Chris@82 675 XM(dtensor_destroy)(sz);
Chris@82 676 return 0;
Chris@82 677 }
Chris@82 678
Chris@82 679 pln = X(mkapiplan)(0, flags,
Chris@82 680 XM(mkproblem_rdft_d)(sz, howmany,
Chris@82 681 in, out,
Chris@82 682 comm, k, MPI_FLAGS(flags)));
Chris@82 683 X(ifree0)(k);
Chris@82 684 return pln;
Chris@82 685 }
Chris@82 686
Chris@82 687 X(plan) XM(plan_many_r2r)(int rnk, const ptrdiff_t *n,
Chris@82 688 ptrdiff_t howmany,
Chris@82 689 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@82 690 R *in, R *out,
Chris@82 691 MPI_Comm comm, const X(r2r_kind) *kind,
Chris@82 692 unsigned flags)
Chris@82 693 {
Chris@82 694 XM(ddim) *dims = simple_dims(rnk, n);
Chris@82 695 X(plan) pln;
Chris@82 696
Chris@82 697 if (rnk == 1) {
Chris@82 698 dims[0].ib = iblock;
Chris@82 699 dims[0].ob = oblock;
Chris@82 700 }
Chris@82 701 else if (rnk > 1) {
Chris@82 702 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@82 703 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@82 704 }
Chris@82 705
Chris@82 706 pln = XM(plan_guru_r2r)(rnk,dims,howmany, in,out, comm, kind, flags);
Chris@82 707 X(ifree)(dims);
Chris@82 708 return pln;
Chris@82 709 }
Chris@82 710
Chris@82 711 X(plan) XM(plan_r2r)(int rnk, const ptrdiff_t *n, R *in, R *out,
Chris@82 712 MPI_Comm comm,
Chris@82 713 const X(r2r_kind) *kind,
Chris@82 714 unsigned flags)
Chris@82 715 {
Chris@82 716 return XM(plan_many_r2r)(rnk, n, 1,
Chris@82 717 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 718 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 719 in, out, comm, kind, flags);
Chris@82 720 }
Chris@82 721
Chris@82 722 X(plan) XM(plan_r2r_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, R *out,
Chris@82 723 MPI_Comm comm,
Chris@82 724 X(r2r_kind) kindx, X(r2r_kind) kindy,
Chris@82 725 unsigned flags)
Chris@82 726 {
Chris@82 727 ptrdiff_t n[2];
Chris@82 728 X(r2r_kind) kind[2];
Chris@82 729 n[0] = nx; n[1] = ny;
Chris@82 730 kind[0] = kindx; kind[1] = kindy;
Chris@82 731 return XM(plan_r2r)(2, n, in, out, comm, kind, flags);
Chris@82 732 }
Chris@82 733
Chris@82 734 X(plan) XM(plan_r2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@82 735 R *in, R *out,
Chris@82 736 MPI_Comm comm,
Chris@82 737 X(r2r_kind) kindx, X(r2r_kind) kindy,
Chris@82 738 X(r2r_kind) kindz,
Chris@82 739 unsigned flags)
Chris@82 740 {
Chris@82 741 ptrdiff_t n[3];
Chris@82 742 X(r2r_kind) kind[3];
Chris@82 743 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@82 744 kind[0] = kindx; kind[1] = kindy; kind[2] = kindz;
Chris@82 745 return XM(plan_r2r)(3, n, in, out, comm, kind, flags);
Chris@82 746 }
Chris@82 747
Chris@82 748 /*************************************************************************/
Chris@82 749 /* R2C/C2R API */
Chris@82 750
Chris@82 751 static X(plan) plan_guru_rdft2(int rnk, const XM(ddim) *dims0,
Chris@82 752 ptrdiff_t howmany,
Chris@82 753 R *r, C *c,
Chris@82 754 MPI_Comm comm, rdft_kind kind, unsigned flags)
Chris@82 755 {
Chris@82 756 int n_pes, i;
Chris@82 757 dtensor *sz;
Chris@82 758 R *cr = (R *) c;
Chris@82 759
Chris@82 760 XM(init)();
Chris@82 761
Chris@82 762 if (howmany < 0 || rnk < 2) return 0;
Chris@82 763 for (i = 0; i < rnk; ++i)
Chris@82 764 if (dims0[i].n < 1 || dims0[i].ib < 0 || dims0[i].ob < 0)
Chris@82 765 return 0;
Chris@82 766
Chris@82 767 MPI_Comm_size(comm, &n_pes);
Chris@82 768 sz = default_sz(rnk, dims0, n_pes, 1);
Chris@82 769
Chris@82 770 sz->dims[rnk-1].n = dims0[rnk-1].n / 2 + 1;
Chris@82 771 if (XM(num_blocks_total)(sz, IB) > n_pes
Chris@82 772 || XM(num_blocks_total)(sz, OB) > n_pes) {
Chris@82 773 XM(dtensor_destroy)(sz);
Chris@82 774 return 0;
Chris@82 775 }
Chris@82 776 sz->dims[rnk-1].n = dims0[rnk-1].n;
Chris@82 777
Chris@82 778 if (kind == R2HC)
Chris@82 779 return X(mkapiplan)(0, flags,
Chris@82 780 XM(mkproblem_rdft2_d)(sz, howmany,
Chris@82 781 r, cr, comm, R2HC,
Chris@82 782 MPI_FLAGS(flags)));
Chris@82 783 else
Chris@82 784 return X(mkapiplan)(0, flags,
Chris@82 785 XM(mkproblem_rdft2_d)(sz, howmany,
Chris@82 786 cr, r, comm, HC2R,
Chris@82 787 MPI_FLAGS(flags)));
Chris@82 788 }
Chris@82 789
Chris@82 790 X(plan) XM(plan_many_dft_r2c)(int rnk, const ptrdiff_t *n,
Chris@82 791 ptrdiff_t howmany,
Chris@82 792 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@82 793 R *in, C *out,
Chris@82 794 MPI_Comm comm, unsigned flags)
Chris@82 795 {
Chris@82 796 XM(ddim) *dims = simple_dims(rnk, n);
Chris@82 797 X(plan) pln;
Chris@82 798
Chris@82 799 if (rnk == 1) {
Chris@82 800 dims[0].ib = iblock;
Chris@82 801 dims[0].ob = oblock;
Chris@82 802 }
Chris@82 803 else if (rnk > 1) {
Chris@82 804 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@82 805 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@82 806 }
Chris@82 807
Chris@82 808 pln = plan_guru_rdft2(rnk,dims,howmany, in,out, comm, R2HC, flags);
Chris@82 809 X(ifree)(dims);
Chris@82 810 return pln;
Chris@82 811 }
Chris@82 812
Chris@82 813 X(plan) XM(plan_many_dft_c2r)(int rnk, const ptrdiff_t *n,
Chris@82 814 ptrdiff_t howmany,
Chris@82 815 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@82 816 C *in, R *out,
Chris@82 817 MPI_Comm comm, unsigned flags)
Chris@82 818 {
Chris@82 819 XM(ddim) *dims = simple_dims(rnk, n);
Chris@82 820 X(plan) pln;
Chris@82 821
Chris@82 822 if (rnk == 1) {
Chris@82 823 dims[0].ib = iblock;
Chris@82 824 dims[0].ob = oblock;
Chris@82 825 }
Chris@82 826 else if (rnk > 1) {
Chris@82 827 dims[0 != (flags & FFTW_MPI_TRANSPOSED_IN)].ib = iblock;
Chris@82 828 dims[0 != (flags & FFTW_MPI_TRANSPOSED_OUT)].ob = oblock;
Chris@82 829 }
Chris@82 830
Chris@82 831 pln = plan_guru_rdft2(rnk,dims,howmany, out,in, comm, HC2R, flags);
Chris@82 832 X(ifree)(dims);
Chris@82 833 return pln;
Chris@82 834 }
Chris@82 835
Chris@82 836 X(plan) XM(plan_dft_r2c)(int rnk, const ptrdiff_t *n, R *in, C *out,
Chris@82 837 MPI_Comm comm, unsigned flags)
Chris@82 838 {
Chris@82 839 return XM(plan_many_dft_r2c)(rnk, n, 1,
Chris@82 840 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 841 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 842 in, out, comm, flags);
Chris@82 843 }
Chris@82 844
Chris@82 845 X(plan) XM(plan_dft_r2c_2d)(ptrdiff_t nx, ptrdiff_t ny, R *in, C *out,
Chris@82 846 MPI_Comm comm, unsigned flags)
Chris@82 847 {
Chris@82 848 ptrdiff_t n[2];
Chris@82 849 n[0] = nx; n[1] = ny;
Chris@82 850 return XM(plan_dft_r2c)(2, n, in, out, comm, flags);
Chris@82 851 }
Chris@82 852
Chris@82 853 X(plan) XM(plan_dft_r2c_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@82 854 R *in, C *out, MPI_Comm comm, unsigned flags)
Chris@82 855 {
Chris@82 856 ptrdiff_t n[3];
Chris@82 857 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@82 858 return XM(plan_dft_r2c)(3, n, in, out, comm, flags);
Chris@82 859 }
Chris@82 860
Chris@82 861 X(plan) XM(plan_dft_c2r)(int rnk, const ptrdiff_t *n, C *in, R *out,
Chris@82 862 MPI_Comm comm, unsigned flags)
Chris@82 863 {
Chris@82 864 return XM(plan_many_dft_c2r)(rnk, n, 1,
Chris@82 865 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 866 FFTW_MPI_DEFAULT_BLOCK,
Chris@82 867 in, out, comm, flags);
Chris@82 868 }
Chris@82 869
Chris@82 870 X(plan) XM(plan_dft_c2r_2d)(ptrdiff_t nx, ptrdiff_t ny, C *in, R *out,
Chris@82 871 MPI_Comm comm, unsigned flags)
Chris@82 872 {
Chris@82 873 ptrdiff_t n[2];
Chris@82 874 n[0] = nx; n[1] = ny;
Chris@82 875 return XM(plan_dft_c2r)(2, n, in, out, comm, flags);
Chris@82 876 }
Chris@82 877
Chris@82 878 X(plan) XM(plan_dft_c2r_3d)(ptrdiff_t nx, ptrdiff_t ny, ptrdiff_t nz,
Chris@82 879 C *in, R *out, MPI_Comm comm, unsigned flags)
Chris@82 880 {
Chris@82 881 ptrdiff_t n[3];
Chris@82 882 n[0] = nx; n[1] = ny; n[2] = nz;
Chris@82 883 return XM(plan_dft_c2r)(3, n, in, out, comm, flags);
Chris@82 884 }
Chris@82 885
Chris@82 886 /*************************************************************************/
Chris@82 887 /* New-array execute functions */
Chris@82 888
Chris@82 889 void XM(execute_dft)(const X(plan) p, C *in, C *out) {
Chris@82 890 /* internally, MPI plans are just rdft plans */
Chris@82 891 X(execute_r2r)(p, (R*) in, (R*) out);
Chris@82 892 }
Chris@82 893
Chris@82 894 void XM(execute_dft_r2c)(const X(plan) p, R *in, C *out) {
Chris@82 895 /* internally, MPI plans are just rdft plans */
Chris@82 896 X(execute_r2r)(p, in, (R*) out);
Chris@82 897 }
Chris@82 898
Chris@82 899 void XM(execute_dft_c2r)(const X(plan) p, C *in, R *out) {
Chris@82 900 /* internally, MPI plans are just rdft plans */
Chris@82 901 X(execute_r2r)(p, (R*) in, out);
Chris@82 902 }
Chris@82 903
Chris@82 904 void XM(execute_r2r)(const X(plan) p, R *in, R *out) {
Chris@82 905 /* internally, MPI plans are just rdft plans */
Chris@82 906 X(execute_r2r)(p, in, out);
Chris@82 907 }