annotate src/fftw-3.3.5/threads/threads.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* threads.c: Portable thread spawning for loops, via the X(spawn_loop)
Chris@42 22 function. The first portion of this file is a set of macros to
Chris@42 23 spawn and join threads on various systems. */
Chris@42 24
Chris@42 25 #include "threads.h"
Chris@42 26 #include "api.h"
Chris@42 27
Chris@42 28 #if defined(USING_POSIX_THREADS)
Chris@42 29
Chris@42 30 #include <pthread.h>
Chris@42 31
Chris@42 32 #ifdef HAVE_UNISTD_H
Chris@42 33 # include <unistd.h>
Chris@42 34 #endif
Chris@42 35
Chris@42 36 /* imlementation of semaphores and mutexes: */
Chris@42 37 #if (defined(_POSIX_SEMAPHORES) && (_POSIX_SEMAPHORES >= 200112L))
Chris@42 38
Chris@42 39 /* If optional POSIX semaphores are supported, use them to
Chris@42 40 implement both semaphores and mutexes. */
Chris@42 41 # include <semaphore.h>
Chris@42 42 # include <errno.h>
Chris@42 43
Chris@42 44 typedef sem_t os_sem_t;
Chris@42 45
Chris@42 46 static void os_sem_init(os_sem_t *s) { sem_init(s, 0, 0); }
Chris@42 47 static void os_sem_destroy(os_sem_t *s) { sem_destroy(s); }
Chris@42 48
Chris@42 49 static void os_sem_down(os_sem_t *s)
Chris@42 50 {
Chris@42 51 int err;
Chris@42 52 do {
Chris@42 53 err = sem_wait(s);
Chris@42 54 } while (err == -1 && errno == EINTR);
Chris@42 55 CK(err == 0);
Chris@42 56 }
Chris@42 57
Chris@42 58 static void os_sem_up(os_sem_t *s) { sem_post(s); }
Chris@42 59
Chris@42 60 /*
Chris@42 61 The reason why we use sem_t to implement mutexes is that I have
Chris@42 62 seen mysterious hangs with glibc-2.7 and linux-2.6.22 when using
Chris@42 63 pthread_mutex_t, but no hangs with sem_t or with linux >=
Chris@42 64 2.6.24. For lack of better information, sem_t looks like the
Chris@42 65 safest choice.
Chris@42 66 */
Chris@42 67 typedef sem_t os_mutex_t;
Chris@42 68 static void os_mutex_init(os_mutex_t *s) { sem_init(s, 0, 1); }
Chris@42 69 #define os_mutex_destroy os_sem_destroy
Chris@42 70 #define os_mutex_lock os_sem_down
Chris@42 71 #define os_mutex_unlock os_sem_up
Chris@42 72
Chris@42 73 #else
Chris@42 74
Chris@42 75 /* If optional POSIX semaphores are not defined, use pthread
Chris@42 76 mutexes for mutexes, and simulate semaphores with condition
Chris@42 77 variables */
Chris@42 78 typedef pthread_mutex_t os_mutex_t;
Chris@42 79
Chris@42 80 static void os_mutex_init(os_mutex_t *s)
Chris@42 81 {
Chris@42 82 pthread_mutex_init(s, (pthread_mutexattr_t *)0);
Chris@42 83 }
Chris@42 84
Chris@42 85 static void os_mutex_destroy(os_mutex_t *s) { pthread_mutex_destroy(s); }
Chris@42 86 static void os_mutex_lock(os_mutex_t *s) { pthread_mutex_lock(s); }
Chris@42 87 static void os_mutex_unlock(os_mutex_t *s) { pthread_mutex_unlock(s); }
Chris@42 88
Chris@42 89 typedef struct {
Chris@42 90 pthread_mutex_t m;
Chris@42 91 pthread_cond_t c;
Chris@42 92 volatile int x;
Chris@42 93 } os_sem_t;
Chris@42 94
Chris@42 95 static void os_sem_init(os_sem_t *s)
Chris@42 96 {
Chris@42 97 pthread_mutex_init(&s->m, (pthread_mutexattr_t *)0);
Chris@42 98 pthread_cond_init(&s->c, (pthread_condattr_t *)0);
Chris@42 99
Chris@42 100 /* wrap initialization in lock to exploit the release
Chris@42 101 semantics of pthread_mutex_unlock() */
Chris@42 102 pthread_mutex_lock(&s->m);
Chris@42 103 s->x = 0;
Chris@42 104 pthread_mutex_unlock(&s->m);
Chris@42 105 }
Chris@42 106
Chris@42 107 static void os_sem_destroy(os_sem_t *s)
Chris@42 108 {
Chris@42 109 pthread_mutex_destroy(&s->m);
Chris@42 110 pthread_cond_destroy(&s->c);
Chris@42 111 }
Chris@42 112
Chris@42 113 static void os_sem_down(os_sem_t *s)
Chris@42 114 {
Chris@42 115 pthread_mutex_lock(&s->m);
Chris@42 116 while (s->x <= 0)
Chris@42 117 pthread_cond_wait(&s->c, &s->m);
Chris@42 118 --s->x;
Chris@42 119 pthread_mutex_unlock(&s->m);
Chris@42 120 }
Chris@42 121
Chris@42 122 static void os_sem_up(os_sem_t *s)
Chris@42 123 {
Chris@42 124 pthread_mutex_lock(&s->m);
Chris@42 125 ++s->x;
Chris@42 126 pthread_cond_signal(&s->c);
Chris@42 127 pthread_mutex_unlock(&s->m);
Chris@42 128 }
Chris@42 129
Chris@42 130 #endif
Chris@42 131
Chris@42 132 #define FFTW_WORKER void *
Chris@42 133
Chris@42 134 static void os_create_thread(FFTW_WORKER (*worker)(void *arg),
Chris@42 135 void *arg)
Chris@42 136 {
Chris@42 137 pthread_attr_t attr;
Chris@42 138 pthread_t tid;
Chris@42 139
Chris@42 140 pthread_attr_init(&attr);
Chris@42 141 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
Chris@42 142 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
Chris@42 143
Chris@42 144 pthread_create(&tid, &attr, worker, (void *)arg);
Chris@42 145 pthread_attr_destroy(&attr);
Chris@42 146 }
Chris@42 147
Chris@42 148 static void os_destroy_thread(void)
Chris@42 149 {
Chris@42 150 pthread_exit((void *)0);
Chris@42 151 }
Chris@42 152
Chris@42 153 /* support for static mutexes */
Chris@42 154 typedef pthread_mutex_t os_static_mutex_t;
Chris@42 155 #define OS_STATIC_MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER
Chris@42 156 static void os_static_mutex_lock(os_static_mutex_t *s) { pthread_mutex_lock(s); }
Chris@42 157 static void os_static_mutex_unlock(os_static_mutex_t *s) { pthread_mutex_unlock(s); }
Chris@42 158
Chris@42 159 #elif defined(__WIN32__) || defined(_WIN32) || defined(_WINDOWS)
Chris@42 160 /* hack: windef.h defines INT for its own purposes and this causes
Chris@42 161 a conflict with our own INT in ifftw.h. Divert the windows
Chris@42 162 definition into another name unlikely to cause a conflict */
Chris@42 163 #define INT magnus_ab_INTegro_seclorum_nascitur_ordo
Chris@42 164 #include <windows.h>
Chris@42 165 #include <process.h>
Chris@42 166 #undef INT
Chris@42 167
Chris@42 168 typedef HANDLE os_mutex_t;
Chris@42 169
Chris@42 170 static void os_mutex_init(os_mutex_t *s)
Chris@42 171 {
Chris@42 172 *s = CreateMutex(NULL, FALSE, NULL);
Chris@42 173 }
Chris@42 174
Chris@42 175 static void os_mutex_destroy(os_mutex_t *s)
Chris@42 176 {
Chris@42 177 CloseHandle(*s);
Chris@42 178 }
Chris@42 179
Chris@42 180 static void os_mutex_lock(os_mutex_t *s)
Chris@42 181 {
Chris@42 182 WaitForSingleObject(*s, INFINITE);
Chris@42 183 }
Chris@42 184
Chris@42 185 static void os_mutex_unlock(os_mutex_t *s)
Chris@42 186 {
Chris@42 187 ReleaseMutex(*s);
Chris@42 188 }
Chris@42 189
Chris@42 190 typedef HANDLE os_sem_t;
Chris@42 191
Chris@42 192 static void os_sem_init(os_sem_t *s)
Chris@42 193 {
Chris@42 194 *s = CreateSemaphore(NULL, 0, 0x7FFFFFFFL, NULL);
Chris@42 195 }
Chris@42 196
Chris@42 197 static void os_sem_destroy(os_sem_t *s)
Chris@42 198 {
Chris@42 199 CloseHandle(*s);
Chris@42 200 }
Chris@42 201
Chris@42 202 static void os_sem_down(os_sem_t *s)
Chris@42 203 {
Chris@42 204 WaitForSingleObject(*s, INFINITE);
Chris@42 205 }
Chris@42 206
Chris@42 207 static void os_sem_up(os_sem_t *s)
Chris@42 208 {
Chris@42 209 ReleaseSemaphore(*s, 1, NULL);
Chris@42 210 }
Chris@42 211
Chris@42 212 #define FFTW_WORKER unsigned __stdcall
Chris@42 213 typedef unsigned (__stdcall *winthread_start) (void *);
Chris@42 214
Chris@42 215 static void os_create_thread(winthread_start worker,
Chris@42 216 void *arg)
Chris@42 217 {
Chris@42 218 _beginthreadex((void *)NULL, /* security attrib */
Chris@42 219 0, /* stack size */
Chris@42 220 worker, /* start address */
Chris@42 221 arg, /* parameters */
Chris@42 222 0, /* creation flags */
Chris@42 223 (unsigned *)NULL); /* tid */
Chris@42 224 }
Chris@42 225
Chris@42 226 static void os_destroy_thread(void)
Chris@42 227 {
Chris@42 228 _endthreadex(0);
Chris@42 229 }
Chris@42 230
Chris@42 231 /* windows does not have statically-initialized mutexes---fake a
Chris@42 232 spinlock */
Chris@42 233 typedef volatile LONG os_static_mutex_t;
Chris@42 234 #define OS_STATIC_MUTEX_INITIALIZER 0
Chris@42 235 static void os_static_mutex_lock(os_static_mutex_t *s)
Chris@42 236 {
Chris@42 237 while (InterlockedExchange(s, 1) == 1) {
Chris@42 238 YieldProcessor();
Chris@42 239 Sleep(0);
Chris@42 240 }
Chris@42 241 }
Chris@42 242 static void os_static_mutex_unlock(os_static_mutex_t *s)
Chris@42 243 {
Chris@42 244 LONG old = InterlockedExchange(s, 0);
Chris@42 245 A(old == 1);
Chris@42 246 }
Chris@42 247 #else
Chris@42 248 #error "No threading layer defined"
Chris@42 249 #endif
Chris@42 250
Chris@42 251 /************************************************************************/
Chris@42 252
Chris@42 253 /* Main code: */
Chris@42 254 struct worker {
Chris@42 255 os_sem_t ready;
Chris@42 256 os_sem_t done;
Chris@42 257 struct work *w;
Chris@42 258 struct worker *cdr;
Chris@42 259 };
Chris@42 260
Chris@42 261 static struct worker *make_worker(void)
Chris@42 262 {
Chris@42 263 struct worker *q = (struct worker *)MALLOC(sizeof(*q), OTHER);
Chris@42 264 os_sem_init(&q->ready);
Chris@42 265 os_sem_init(&q->done);
Chris@42 266 return q;
Chris@42 267 }
Chris@42 268
Chris@42 269 static void unmake_worker(struct worker *q)
Chris@42 270 {
Chris@42 271 os_sem_destroy(&q->done);
Chris@42 272 os_sem_destroy(&q->ready);
Chris@42 273 X(ifree)(q);
Chris@42 274 }
Chris@42 275
Chris@42 276 struct work {
Chris@42 277 spawn_function proc;
Chris@42 278 spawn_data d;
Chris@42 279 struct worker *q; /* the worker responsible for performing this work */
Chris@42 280 };
Chris@42 281
Chris@42 282 static os_mutex_t queue_lock;
Chris@42 283 static os_sem_t termination_semaphore;
Chris@42 284
Chris@42 285 static struct worker *worker_queue;
Chris@42 286 #define WITH_QUEUE_LOCK(what) \
Chris@42 287 { \
Chris@42 288 os_mutex_lock(&queue_lock); \
Chris@42 289 what; \
Chris@42 290 os_mutex_unlock(&queue_lock); \
Chris@42 291 }
Chris@42 292
Chris@42 293 static FFTW_WORKER worker(void *arg)
Chris@42 294 {
Chris@42 295 struct worker *ego = (struct worker *)arg;
Chris@42 296 struct work *w;
Chris@42 297
Chris@42 298 for (;;) {
Chris@42 299 /* wait until work becomes available */
Chris@42 300 os_sem_down(&ego->ready);
Chris@42 301
Chris@42 302 w = ego->w;
Chris@42 303
Chris@42 304 /* !w->proc ==> terminate worker */
Chris@42 305 if (!w->proc) break;
Chris@42 306
Chris@42 307 /* do the work */
Chris@42 308 w->proc(&w->d);
Chris@42 309
Chris@42 310 /* signal that work is done */
Chris@42 311 os_sem_up(&ego->done);
Chris@42 312 }
Chris@42 313
Chris@42 314 /* termination protocol */
Chris@42 315 os_sem_up(&termination_semaphore);
Chris@42 316
Chris@42 317 os_destroy_thread();
Chris@42 318 /* UNREACHABLE */
Chris@42 319 return 0;
Chris@42 320 }
Chris@42 321
Chris@42 322 static void enqueue(struct worker *q)
Chris@42 323 {
Chris@42 324 WITH_QUEUE_LOCK({
Chris@42 325 q->cdr = worker_queue;
Chris@42 326 worker_queue = q;
Chris@42 327 });
Chris@42 328 }
Chris@42 329
Chris@42 330 static struct worker *dequeue(void)
Chris@42 331 {
Chris@42 332 struct worker *q;
Chris@42 333
Chris@42 334 WITH_QUEUE_LOCK({
Chris@42 335 q = worker_queue;
Chris@42 336 if (q)
Chris@42 337 worker_queue = q->cdr;
Chris@42 338 });
Chris@42 339
Chris@42 340 if (!q) {
Chris@42 341 /* no worker is available. Create one */
Chris@42 342 q = make_worker();
Chris@42 343 os_create_thread(worker, q);
Chris@42 344 }
Chris@42 345
Chris@42 346 return q;
Chris@42 347 }
Chris@42 348
Chris@42 349
Chris@42 350 static void kill_workforce(void)
Chris@42 351 {
Chris@42 352 struct work w;
Chris@42 353
Chris@42 354 w.proc = 0;
Chris@42 355
Chris@42 356 THREAD_ON; /* needed for debugging mode: since make_worker
Chris@42 357 is called from dequeue which is only called in
Chris@42 358 thread_on mode, we need to unmake_worker in thread_on. */
Chris@42 359 WITH_QUEUE_LOCK({
Chris@42 360 /* tell all workers that they must terminate.
Chris@42 361
Chris@42 362 Because workers enqueue themselves before signaling the
Chris@42 363 completion of the work, all workers belong to the worker queue
Chris@42 364 if we get here. Also, all workers are waiting at
Chris@42 365 os_sem_down(ready), so we can hold the queue lock without
Chris@42 366 deadlocking */
Chris@42 367 while (worker_queue) {
Chris@42 368 struct worker *q = worker_queue;
Chris@42 369 worker_queue = q->cdr;
Chris@42 370 q->w = &w;
Chris@42 371 os_sem_up(&q->ready);
Chris@42 372 os_sem_down(&termination_semaphore);
Chris@42 373 unmake_worker(q);
Chris@42 374 }
Chris@42 375 });
Chris@42 376 THREAD_OFF;
Chris@42 377 }
Chris@42 378
Chris@42 379 static os_static_mutex_t initialization_mutex = OS_STATIC_MUTEX_INITIALIZER;
Chris@42 380
Chris@42 381 int X(ithreads_init)(void)
Chris@42 382 {
Chris@42 383 os_static_mutex_lock(&initialization_mutex); {
Chris@42 384 os_mutex_init(&queue_lock);
Chris@42 385 os_sem_init(&termination_semaphore);
Chris@42 386
Chris@42 387 WITH_QUEUE_LOCK({
Chris@42 388 worker_queue = 0;
Chris@42 389 });
Chris@42 390 } os_static_mutex_unlock(&initialization_mutex);
Chris@42 391
Chris@42 392 return 0; /* no error */
Chris@42 393 }
Chris@42 394
Chris@42 395 /* Distribute a loop from 0 to loopmax-1 over nthreads threads.
Chris@42 396 proc(d) is called to execute a block of iterations from d->min
Chris@42 397 to d->max-1. d->thr_num indicate the number of the thread
Chris@42 398 that is executing proc (from 0 to nthreads-1), and d->data is
Chris@42 399 the same as the data parameter passed to X(spawn_loop).
Chris@42 400
Chris@42 401 This function returns only after all the threads have completed. */
Chris@42 402 void X(spawn_loop)(int loopmax, int nthr, spawn_function proc, void *data)
Chris@42 403 {
Chris@42 404 int block_size;
Chris@42 405 struct work *r;
Chris@42 406 int i;
Chris@42 407
Chris@42 408 A(loopmax >= 0);
Chris@42 409 A(nthr > 0);
Chris@42 410 A(proc);
Chris@42 411
Chris@42 412 if (!loopmax) return;
Chris@42 413
Chris@42 414 /* Choose the block size and number of threads in order to (1)
Chris@42 415 minimize the critical path and (2) use the fewest threads that
Chris@42 416 achieve the same critical path (to minimize overhead).
Chris@42 417 e.g. if loopmax is 5 and nthr is 4, we should use only 3
Chris@42 418 threads with block sizes of 2, 2, and 1. */
Chris@42 419 block_size = (loopmax + nthr - 1) / nthr;
Chris@42 420 nthr = (loopmax + block_size - 1) / block_size;
Chris@42 421
Chris@42 422 THREAD_ON; /* prevent debugging mode from failing under threads */
Chris@42 423 STACK_MALLOC(struct work *, r, sizeof(struct work) * nthr);
Chris@42 424
Chris@42 425 /* distribute work: */
Chris@42 426 for (i = 0; i < nthr; ++i) {
Chris@42 427 struct work *w = &r[i];
Chris@42 428 spawn_data *d = &w->d;
Chris@42 429
Chris@42 430 d->max = (d->min = i * block_size) + block_size;
Chris@42 431 if (d->max > loopmax)
Chris@42 432 d->max = loopmax;
Chris@42 433 d->thr_num = i;
Chris@42 434 d->data = data;
Chris@42 435 w->proc = proc;
Chris@42 436
Chris@42 437 if (i == nthr - 1) {
Chris@42 438 /* do the work ourselves */
Chris@42 439 proc(d);
Chris@42 440 } else {
Chris@42 441 /* assign a worker to W */
Chris@42 442 w->q = dequeue();
Chris@42 443
Chris@42 444 /* tell worker w->q to do it */
Chris@42 445 w->q->w = w; /* Dirac could have written this */
Chris@42 446 os_sem_up(&w->q->ready);
Chris@42 447 }
Chris@42 448 }
Chris@42 449
Chris@42 450 for (i = 0; i < nthr - 1; ++i) {
Chris@42 451 struct work *w = &r[i];
Chris@42 452 os_sem_down(&w->q->done);
Chris@42 453 enqueue(w->q);
Chris@42 454 }
Chris@42 455
Chris@42 456 STACK_FREE(r);
Chris@42 457 THREAD_OFF; /* prevent debugging mode from failing under threads */
Chris@42 458 }
Chris@42 459
Chris@42 460 void X(threads_cleanup)(void)
Chris@42 461 {
Chris@42 462 kill_workforce();
Chris@42 463 os_mutex_destroy(&queue_lock);
Chris@42 464 os_sem_destroy(&termination_semaphore);
Chris@42 465 }
Chris@42 466
Chris@42 467 static os_static_mutex_t install_planner_hooks_mutex = OS_STATIC_MUTEX_INITIALIZER;
Chris@42 468 static os_mutex_t planner_mutex;
Chris@42 469 static int planner_hooks_installed = 0;
Chris@42 470
Chris@42 471 static void lock_planner_mutex(void)
Chris@42 472 {
Chris@42 473 os_mutex_lock(&planner_mutex);
Chris@42 474 }
Chris@42 475
Chris@42 476 static void unlock_planner_mutex(void)
Chris@42 477 {
Chris@42 478 os_mutex_unlock(&planner_mutex);
Chris@42 479 }
Chris@42 480
Chris@42 481 void X(threads_register_planner_hooks)(void)
Chris@42 482 {
Chris@42 483 os_static_mutex_lock(&install_planner_hooks_mutex); {
Chris@42 484 if (!planner_hooks_installed) {
Chris@42 485 os_mutex_init(&planner_mutex);
Chris@42 486 X(set_planner_hooks)(lock_planner_mutex, unlock_planner_mutex);
Chris@42 487 planner_hooks_installed = 1;
Chris@42 488 }
Chris@42 489 } os_static_mutex_unlock(&install_planner_hooks_mutex);
Chris@42 490 }