annotate src/fftw-3.3.5/rdft/problem.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21
Chris@42 22 #include "rdft.h"
Chris@42 23 #include <stddef.h>
Chris@42 24
Chris@42 25 static void destroy(problem *ego_)
Chris@42 26 {
Chris@42 27 problem_rdft *ego = (problem_rdft *) ego_;
Chris@42 28 #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
Chris@42 29 X(ifree0)(ego->kind);
Chris@42 30 #endif
Chris@42 31 X(tensor_destroy2)(ego->vecsz, ego->sz);
Chris@42 32 X(ifree)(ego_);
Chris@42 33 }
Chris@42 34
Chris@42 35 static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
Chris@42 36 {
Chris@42 37 int i;
Chris@42 38 for (i = 0; i < rnk; ++i)
Chris@42 39 X(md5int)(m, kind[i]);
Chris@42 40 }
Chris@42 41
Chris@42 42 static void hash(const problem *p_, md5 *m)
Chris@42 43 {
Chris@42 44 const problem_rdft *p = (const problem_rdft *) p_;
Chris@42 45 X(md5puts)(m, "rdft");
Chris@42 46 X(md5int)(m, p->I == p->O);
Chris@42 47 kind_hash(m, p->kind, p->sz->rnk);
Chris@42 48 X(md5int)(m, X(ialignment_of)(p->I));
Chris@42 49 X(md5int)(m, X(ialignment_of)(p->O));
Chris@42 50 X(tensor_md5)(m, p->sz);
Chris@42 51 X(tensor_md5)(m, p->vecsz);
Chris@42 52 }
Chris@42 53
Chris@42 54 static void recur(const iodim *dims, int rnk, R *I)
Chris@42 55 {
Chris@42 56 if (rnk == RNK_MINFTY)
Chris@42 57 return;
Chris@42 58 else if (rnk == 0)
Chris@42 59 I[0] = K(0.0);
Chris@42 60 else if (rnk > 0) {
Chris@42 61 INT i, n = dims[0].n, is = dims[0].is;
Chris@42 62
Chris@42 63 if (rnk == 1) {
Chris@42 64 /* this case is redundant but faster */
Chris@42 65 for (i = 0; i < n; ++i)
Chris@42 66 I[i * is] = K(0.0);
Chris@42 67 } else {
Chris@42 68 for (i = 0; i < n; ++i)
Chris@42 69 recur(dims + 1, rnk - 1, I + i * is);
Chris@42 70 }
Chris@42 71 }
Chris@42 72 }
Chris@42 73
Chris@42 74 void X(rdft_zerotens)(tensor *sz, R *I)
Chris@42 75 {
Chris@42 76 recur(sz->dims, sz->rnk, I);
Chris@42 77 }
Chris@42 78
Chris@42 79 #define KSTR_LEN 8
Chris@42 80
Chris@42 81 const char *X(rdft_kind_str)(rdft_kind kind)
Chris@42 82 {
Chris@42 83 static const char kstr[][KSTR_LEN] = {
Chris@42 84 "r2hc", "r2hc01", "r2hc10", "r2hc11",
Chris@42 85 "hc2r", "hc2r01", "hc2r10", "hc2r11",
Chris@42 86 "dht",
Chris@42 87 "redft00", "redft01", "redft10", "redft11",
Chris@42 88 "rodft00", "rodft01", "rodft10", "rodft11"
Chris@42 89 };
Chris@42 90 A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
Chris@42 91 return kstr[kind];
Chris@42 92 }
Chris@42 93
Chris@42 94 static void print(const problem *ego_, printer *p)
Chris@42 95 {
Chris@42 96 const problem_rdft *ego = (const problem_rdft *) ego_;
Chris@42 97 int i;
Chris@42 98 p->print(p, "(rdft %d %D %T %T",
Chris@42 99 X(ialignment_of)(ego->I),
Chris@42 100 (INT)(ego->O - ego->I),
Chris@42 101 ego->sz,
Chris@42 102 ego->vecsz);
Chris@42 103 for (i = 0; i < ego->sz->rnk; ++i)
Chris@42 104 p->print(p, " %d", (int)ego->kind[i]);
Chris@42 105 p->print(p, ")");
Chris@42 106 }
Chris@42 107
Chris@42 108 static void zero(const problem *ego_)
Chris@42 109 {
Chris@42 110 const problem_rdft *ego = (const problem_rdft *) ego_;
Chris@42 111 tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
Chris@42 112 X(rdft_zerotens)(sz, UNTAINT(ego->I));
Chris@42 113 X(tensor_destroy)(sz);
Chris@42 114 }
Chris@42 115
Chris@42 116 static const problem_adt padt =
Chris@42 117 {
Chris@42 118 PROBLEM_RDFT,
Chris@42 119 hash,
Chris@42 120 zero,
Chris@42 121 print,
Chris@42 122 destroy
Chris@42 123 };
Chris@42 124
Chris@42 125 /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
Chris@42 126 eliminated. REDFT/RODFT unit dimensions often have factors of 2.0
Chris@42 127 and suchlike from normalization and phases, although in principle
Chris@42 128 these constant factors from different dimensions could be combined. */
Chris@42 129 static int nontrivial(const iodim *d, rdft_kind kind)
Chris@42 130 {
Chris@42 131 return (d->n > 1 || kind == R2HC11 || kind == HC2R11
Chris@42 132 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
Chris@42 133 }
Chris@42 134
Chris@42 135 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
Chris@42 136 R *I, R *O, const rdft_kind *kind)
Chris@42 137 {
Chris@42 138 problem_rdft *ego;
Chris@42 139 int rnk = sz->rnk;
Chris@42 140 int i;
Chris@42 141
Chris@42 142 A(X(tensor_kosherp)(sz));
Chris@42 143 A(X(tensor_kosherp)(vecsz));
Chris@42 144 A(FINITE_RNK(sz->rnk));
Chris@42 145
Chris@42 146 if (UNTAINT(I) == UNTAINT(O))
Chris@42 147 I = O = JOIN_TAINT(I, O);
Chris@42 148
Chris@42 149 if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
Chris@42 150 return X(mkproblem_unsolvable)();
Chris@42 151
Chris@42 152 for (i = rnk = 0; i < sz->rnk; ++i) {
Chris@42 153 A(sz->dims[i].n > 0);
Chris@42 154 if (nontrivial(sz->dims + i, kind[i]))
Chris@42 155 ++rnk;
Chris@42 156 }
Chris@42 157
Chris@42 158 #if defined(STRUCT_HACK_KR)
Chris@42 159 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
Chris@42 160 + sizeof(rdft_kind)
Chris@42 161 * (rnk > 0 ? rnk - 1u : 0u), &padt);
Chris@42 162 #elif defined(STRUCT_HACK_C99)
Chris@42 163 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
Chris@42 164 + sizeof(rdft_kind) * (unsigned)rnk, &padt);
Chris@42 165 #else
Chris@42 166 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
Chris@42 167 ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
Chris@42 168 #endif
Chris@42 169
Chris@42 170 /* do compression and sorting as in X(tensor_compress), but take
Chris@42 171 transform kind into account (sigh) */
Chris@42 172 ego->sz = X(mktensor)(rnk);
Chris@42 173 for (i = rnk = 0; i < sz->rnk; ++i) {
Chris@42 174 if (nontrivial(sz->dims + i, kind[i])) {
Chris@42 175 ego->kind[rnk] = kind[i];
Chris@42 176 ego->sz->dims[rnk++] = sz->dims[i];
Chris@42 177 }
Chris@42 178 }
Chris@42 179 for (i = 0; i + 1 < rnk; ++i) {
Chris@42 180 int j;
Chris@42 181 for (j = i + 1; j < rnk; ++j)
Chris@42 182 if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
Chris@42 183 iodim dswap;
Chris@42 184 rdft_kind kswap;
Chris@42 185 dswap = ego->sz->dims[i];
Chris@42 186 ego->sz->dims[i] = ego->sz->dims[j];
Chris@42 187 ego->sz->dims[j] = dswap;
Chris@42 188 kswap = ego->kind[i];
Chris@42 189 ego->kind[i] = ego->kind[j];
Chris@42 190 ego->kind[j] = kswap;
Chris@42 191 }
Chris@42 192 }
Chris@42 193
Chris@42 194 for (i = 0; i < rnk; ++i)
Chris@42 195 if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
Chris@42 196 || ego->kind[i] == DHT
Chris@42 197 || ego->kind[i] == HC2R))
Chris@42 198 ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
Chris@42 199
Chris@42 200 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
Chris@42 201 ego->I = I;
Chris@42 202 ego->O = O;
Chris@42 203
Chris@42 204 A(FINITE_RNK(ego->sz->rnk));
Chris@42 205
Chris@42 206 return &(ego->super);
Chris@42 207 }
Chris@42 208
Chris@42 209 /* Same as X(mkproblem_rdft), but also destroy input tensors. */
Chris@42 210 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
Chris@42 211 R *I, R *O, const rdft_kind *kind)
Chris@42 212 {
Chris@42 213 problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
Chris@42 214 X(tensor_destroy2)(vecsz, sz);
Chris@42 215 return p;
Chris@42 216 }
Chris@42 217
Chris@42 218 /* As above, but for rnk <= 1 only and takes a scalar kind parameter */
Chris@42 219 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
Chris@42 220 R *I, R *O, rdft_kind kind)
Chris@42 221 {
Chris@42 222 A(sz->rnk <= 1);
Chris@42 223 return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
Chris@42 224 }
Chris@42 225
Chris@42 226 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
Chris@42 227 R *I, R *O, rdft_kind kind)
Chris@42 228 {
Chris@42 229 A(sz->rnk <= 1);
Chris@42 230 return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
Chris@42 231 }
Chris@42 232
Chris@42 233 /* create a zero-dimensional problem */
Chris@42 234 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
Chris@42 235 {
Chris@42 236 return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
Chris@42 237 (const rdft_kind *)0);
Chris@42 238 }