cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
|
cannam@167
|
22 # error "SSE/SSE2 only works in single/double precision"
|
cannam@167
|
23 #endif
|
cannam@167
|
24
|
cannam@167
|
25 #ifdef FFTW_SINGLE
|
cannam@167
|
26 # define DS(d,s) s /* single-precision option */
|
cannam@167
|
27 # define SUFF(name) name ## s
|
cannam@167
|
28 #else
|
cannam@167
|
29 # define DS(d,s) d /* double-precision option */
|
cannam@167
|
30 # define SUFF(name) name ## d
|
cannam@167
|
31 #endif
|
cannam@167
|
32
|
cannam@167
|
33 #define SIMD_SUFFIX _sse2 /* for renaming */
|
cannam@167
|
34 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
|
cannam@167
|
35 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
|
cannam@167
|
36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
cannam@167
|
37
|
cannam@167
|
38 #if defined(__GNUC__) && !defined(FFTW_SINGLE) && !defined(__SSE2__)
|
cannam@167
|
39 # error "compiling simd-sse2.h in double precision without -msse2"
|
cannam@167
|
40 #elif defined(__GNUC__) && defined(FFTW_SINGLE) && !defined(__SSE__)
|
cannam@167
|
41 # error "compiling simd-sse2.h in single precision without -msse"
|
cannam@167
|
42 #endif
|
cannam@167
|
43
|
cannam@167
|
44 #ifdef _MSC_VER
|
cannam@167
|
45 #ifndef inline
|
cannam@167
|
46 #define inline __inline
|
cannam@167
|
47 #endif
|
cannam@167
|
48 #endif
|
cannam@167
|
49
|
cannam@167
|
50 /* some versions of glibc's sys/cdefs.h define __inline to be empty,
|
cannam@167
|
51 which is wrong because emmintrin.h defines several inline
|
cannam@167
|
52 procedures */
|
cannam@167
|
53 #ifndef _MSC_VER
|
cannam@167
|
54 #undef __inline
|
cannam@167
|
55 #endif
|
cannam@167
|
56
|
cannam@167
|
57 #ifdef FFTW_SINGLE
|
cannam@167
|
58 # include <xmmintrin.h>
|
cannam@167
|
59 #else
|
cannam@167
|
60 # include <emmintrin.h>
|
cannam@167
|
61 #endif
|
cannam@167
|
62
|
cannam@167
|
63 typedef DS(__m128d,__m128) V;
|
cannam@167
|
64 #define VADD SUFF(_mm_add_p)
|
cannam@167
|
65 #define VSUB SUFF(_mm_sub_p)
|
cannam@167
|
66 #define VMUL SUFF(_mm_mul_p)
|
cannam@167
|
67 #define VXOR SUFF(_mm_xor_p)
|
cannam@167
|
68 #define SHUF SUFF(_mm_shuffle_p)
|
cannam@167
|
69 #define UNPCKL SUFF(_mm_unpacklo_p)
|
cannam@167
|
70 #define UNPCKH SUFF(_mm_unpackhi_p)
|
cannam@167
|
71
|
cannam@167
|
72 #define SHUFVALS(fp0,fp1,fp2,fp3) \
|
cannam@167
|
73 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
|
cannam@167
|
74
|
cannam@167
|
75 #define VDUPL(x) DS(UNPCKL(x, x), SHUF(x, x, SHUFVALS(0, 0, 2, 2)))
|
cannam@167
|
76 #define VDUPH(x) DS(UNPCKH(x, x), SHUF(x, x, SHUFVALS(1, 1, 3, 3)))
|
cannam@167
|
77 #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
|
cannam@167
|
78 #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
|
cannam@167
|
79
|
cannam@167
|
80
|
cannam@167
|
81 #ifdef __GNUC__
|
cannam@167
|
82 /*
|
cannam@167
|
83 * gcc-3.3 generates slow code for mm_set_ps (write all elements to
|
cannam@167
|
84 * the stack and load __m128 from the stack).
|
cannam@167
|
85 *
|
cannam@167
|
86 * gcc-3.[34] generates slow code for mm_set_ps1 (load into low element
|
cannam@167
|
87 * and shuffle).
|
cannam@167
|
88 *
|
cannam@167
|
89 * This hack forces gcc to generate a constant __m128 at compile time.
|
cannam@167
|
90 */
|
cannam@167
|
91 union rvec {
|
cannam@167
|
92 R r[DS(2,4)];
|
cannam@167
|
93 V v;
|
cannam@167
|
94 };
|
cannam@167
|
95
|
cannam@167
|
96 # ifdef FFTW_SINGLE
|
cannam@167
|
97 # define DVK(var, val) V var = __extension__ ({ \
|
cannam@167
|
98 static const union rvec _var = { {val,val,val,val} }; _var.v; })
|
cannam@167
|
99 # else
|
cannam@167
|
100 # define DVK(var, val) V var = __extension__ ({ \
|
cannam@167
|
101 static const union rvec _var = { {val,val} }; _var.v; })
|
cannam@167
|
102 # endif
|
cannam@167
|
103 # define LDK(x) x
|
cannam@167
|
104 #else
|
cannam@167
|
105 # define DVK(var, val) const R var = K(val)
|
cannam@167
|
106 # define LDK(x) DS(_mm_set1_pd,_mm_set_ps1)(x)
|
cannam@167
|
107 #endif
|
cannam@167
|
108
|
cannam@167
|
109 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
cannam@167
|
110 {
|
cannam@167
|
111 (void)aligned_like; /* UNUSED */
|
cannam@167
|
112 (void)ivs; /* UNUSED */
|
cannam@167
|
113 return *(const V *)x;
|
cannam@167
|
114 }
|
cannam@167
|
115
|
cannam@167
|
116 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@167
|
117 {
|
cannam@167
|
118 (void)aligned_like; /* UNUSED */
|
cannam@167
|
119 (void)ovs; /* UNUSED */
|
cannam@167
|
120 *(V *)x = v;
|
cannam@167
|
121 }
|
cannam@167
|
122
|
cannam@167
|
123 #ifdef FFTW_SINGLE
|
cannam@167
|
124
|
cannam@167
|
125 # ifdef _MSC_VER
|
cannam@167
|
126 /* Temporarily disable the warning "uninitialized local variable
|
cannam@167
|
127 'name' used" and runtime checks for using a variable before it is
|
cannam@167
|
128 defined which is erroneously triggered by the LOADL0 / LOADH macros
|
cannam@167
|
129 as they only modify VAL partly each. */
|
cannam@167
|
130 # ifndef __INTEL_COMPILER
|
cannam@167
|
131 # pragma warning(disable : 4700)
|
cannam@167
|
132 # pragma runtime_checks("u", off)
|
cannam@167
|
133 # endif
|
cannam@167
|
134 # endif
|
cannam@167
|
135 # ifdef __INTEL_COMPILER
|
cannam@167
|
136 # pragma warning(disable : 592)
|
cannam@167
|
137 # endif
|
cannam@167
|
138
|
cannam@167
|
139 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
cannam@167
|
140 {
|
cannam@167
|
141 V var;
|
cannam@167
|
142 (void)aligned_like; /* UNUSED */
|
cannam@167
|
143 # ifdef __GNUC__
|
cannam@167
|
144 /* We use inline asm because gcc-3.x generates slow code for
|
cannam@167
|
145 _mm_loadh_pi(). gcc-3.x insists upon having an existing variable for
|
cannam@167
|
146 VAL, which is however never used. Thus, it generates code to move
|
cannam@167
|
147 values in and out the variable. Worse still, gcc-4.0 stores VAL on
|
cannam@167
|
148 the stack, causing valgrind to complain about uninitialized reads. */
|
cannam@167
|
149 __asm__("movlps %1, %0\n\tmovhps %2, %0"
|
cannam@167
|
150 : "=x"(var) : "m"(x[0]), "m"(x[ivs]));
|
cannam@167
|
151 # else
|
cannam@167
|
152 # define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
|
cannam@167
|
153 # define LOADL0(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
|
cannam@167
|
154 var = LOADL0(x, var);
|
cannam@167
|
155 var = LOADH(x + ivs, var);
|
cannam@167
|
156 # endif
|
cannam@167
|
157 return var;
|
cannam@167
|
158 }
|
cannam@167
|
159
|
cannam@167
|
160 # ifdef _MSC_VER
|
cannam@167
|
161 # ifndef __INTEL_COMPILER
|
cannam@167
|
162 # pragma warning(default : 4700)
|
cannam@167
|
163 # pragma runtime_checks("u", restore)
|
cannam@167
|
164 # endif
|
cannam@167
|
165 # endif
|
cannam@167
|
166 # ifdef __INTEL_COMPILER
|
cannam@167
|
167 # pragma warning(default : 592)
|
cannam@167
|
168 # endif
|
cannam@167
|
169
|
cannam@167
|
170 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@167
|
171 {
|
cannam@167
|
172 (void)aligned_like; /* UNUSED */
|
cannam@167
|
173 /* WARNING: the extra_iter hack depends upon STOREL occurring
|
cannam@167
|
174 after STOREH */
|
cannam@167
|
175 STOREH(x + ovs, v);
|
cannam@167
|
176 STOREL(x, v);
|
cannam@167
|
177 }
|
cannam@167
|
178
|
cannam@167
|
179 #else /* ! FFTW_SINGLE */
|
cannam@167
|
180 # define LD LDA
|
cannam@167
|
181 # define ST STA
|
cannam@167
|
182 #endif
|
cannam@167
|
183
|
cannam@167
|
184 #define STM2 DS(STA,ST)
|
cannam@167
|
185 #define STN2(x, v0, v1, ovs) /* nop */
|
cannam@167
|
186
|
cannam@167
|
187 #ifdef FFTW_SINGLE
|
cannam@167
|
188 # define STM4(x, v, ovs, aligned_like) /* no-op */
|
cannam@167
|
189 /* STN4 is a macro, not a function, thanks to Visual C++ developers
|
cannam@167
|
190 deciding "it would be infrequent that people would want to pass more
|
cannam@167
|
191 than 3 [__m128 parameters] by value." 3 parameters ought to be enough
|
cannam@167
|
192 for anybody. */
|
cannam@167
|
193 # define STN4(x, v0, v1, v2, v3, ovs) \
|
cannam@167
|
194 { \
|
cannam@167
|
195 V xxx0, xxx1, xxx2, xxx3; \
|
cannam@167
|
196 xxx0 = UNPCKL(v0, v2); \
|
cannam@167
|
197 xxx1 = UNPCKH(v0, v2); \
|
cannam@167
|
198 xxx2 = UNPCKL(v1, v3); \
|
cannam@167
|
199 xxx3 = UNPCKH(v1, v3); \
|
cannam@167
|
200 STA(x, UNPCKL(xxx0, xxx2), 0, 0); \
|
cannam@167
|
201 STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \
|
cannam@167
|
202 STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \
|
cannam@167
|
203 STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \
|
cannam@167
|
204 }
|
cannam@167
|
205 #else /* !FFTW_SINGLE */
|
cannam@167
|
206 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@167
|
207 {
|
cannam@167
|
208 (void)aligned_like; /* UNUSED */
|
cannam@167
|
209 STOREL(x, v);
|
cannam@167
|
210 STOREH(x + ovs, v);
|
cannam@167
|
211 }
|
cannam@167
|
212 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
|
cannam@167
|
213 #endif
|
cannam@167
|
214
|
cannam@167
|
215 static inline V FLIP_RI(V x)
|
cannam@167
|
216 {
|
cannam@167
|
217 return SHUF(x, x, DS(1, SHUFVALS(1, 0, 3, 2)));
|
cannam@167
|
218 }
|
cannam@167
|
219
|
cannam@167
|
220 static inline V VCONJ(V x)
|
cannam@167
|
221 {
|
cannam@167
|
222 /* This will produce -0.0f (or -0.0d) even on broken
|
cannam@167
|
223 compilers that do not distinguish +0.0 from -0.0.
|
cannam@167
|
224 I bet some are still around. */
|
cannam@167
|
225 union uvec {
|
cannam@167
|
226 unsigned u[4];
|
cannam@167
|
227 V v;
|
cannam@167
|
228 };
|
cannam@167
|
229 /* it looks like gcc-3.3.5 produces slow code unless PM is
|
cannam@167
|
230 declared static. */
|
cannam@167
|
231 static const union uvec pm = {
|
cannam@167
|
232 #ifdef FFTW_SINGLE
|
cannam@167
|
233 { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }
|
cannam@167
|
234 #else
|
cannam@167
|
235 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }
|
cannam@167
|
236 #endif
|
cannam@167
|
237 };
|
cannam@167
|
238 return VXOR(pm.v, x);
|
cannam@167
|
239 }
|
cannam@167
|
240
|
cannam@167
|
241 static inline V VBYI(V x)
|
cannam@167
|
242 {
|
cannam@167
|
243 x = VCONJ(x);
|
cannam@167
|
244 x = FLIP_RI(x);
|
cannam@167
|
245 return x;
|
cannam@167
|
246 }
|
cannam@167
|
247
|
cannam@167
|
248 /* FMA support */
|
cannam@167
|
249 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
|
cannam@167
|
250 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
|
cannam@167
|
251 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
|
cannam@167
|
252 #define VFMAI(b, c) VADD(c, VBYI(b))
|
cannam@167
|
253 #define VFNMSI(b, c) VSUB(c, VBYI(b))
|
cannam@167
|
254 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
|
cannam@167
|
255 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
|
cannam@167
|
256 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
|
cannam@167
|
257
|
cannam@167
|
258 static inline V VZMUL(V tx, V sr)
|
cannam@167
|
259 {
|
cannam@167
|
260 V tr = VDUPL(tx);
|
cannam@167
|
261 V ti = VDUPH(tx);
|
cannam@167
|
262 tr = VMUL(sr, tr);
|
cannam@167
|
263 sr = VBYI(sr);
|
cannam@167
|
264 return VFMA(ti, sr, tr);
|
cannam@167
|
265 }
|
cannam@167
|
266
|
cannam@167
|
267 static inline V VZMULJ(V tx, V sr)
|
cannam@167
|
268 {
|
cannam@167
|
269 V tr = VDUPL(tx);
|
cannam@167
|
270 V ti = VDUPH(tx);
|
cannam@167
|
271 tr = VMUL(sr, tr);
|
cannam@167
|
272 sr = VBYI(sr);
|
cannam@167
|
273 return VFNMS(ti, sr, tr);
|
cannam@167
|
274 }
|
cannam@167
|
275
|
cannam@167
|
276 static inline V VZMULI(V tx, V sr)
|
cannam@167
|
277 {
|
cannam@167
|
278 V tr = VDUPL(tx);
|
cannam@167
|
279 V ti = VDUPH(tx);
|
cannam@167
|
280 ti = VMUL(ti, sr);
|
cannam@167
|
281 sr = VBYI(sr);
|
cannam@167
|
282 return VFMS(tr, sr, ti);
|
cannam@167
|
283 }
|
cannam@167
|
284
|
cannam@167
|
285 static inline V VZMULIJ(V tx, V sr)
|
cannam@167
|
286 {
|
cannam@167
|
287 V tr = VDUPL(tx);
|
cannam@167
|
288 V ti = VDUPH(tx);
|
cannam@167
|
289 ti = VMUL(ti, sr);
|
cannam@167
|
290 sr = VBYI(sr);
|
cannam@167
|
291 return VFMA(tr, sr, ti);
|
cannam@167
|
292 }
|
cannam@167
|
293
|
cannam@167
|
294 /* twiddle storage #1: compact, slower */
|
cannam@167
|
295 #ifdef FFTW_SINGLE
|
cannam@167
|
296 # define VTW1(v,x) \
|
cannam@167
|
297 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
cannam@167
|
298 static inline V BYTW1(const R *t, V sr)
|
cannam@167
|
299 {
|
cannam@167
|
300 const V *twp = (const V *)t;
|
cannam@167
|
301 V tx = twp[0];
|
cannam@167
|
302 V tr = UNPCKL(tx, tx);
|
cannam@167
|
303 V ti = UNPCKH(tx, tx);
|
cannam@167
|
304 tr = VMUL(tr, sr);
|
cannam@167
|
305 sr = VBYI(sr);
|
cannam@167
|
306 return VFMA(ti, sr, tr);
|
cannam@167
|
307 }
|
cannam@167
|
308 static inline V BYTWJ1(const R *t, V sr)
|
cannam@167
|
309 {
|
cannam@167
|
310 const V *twp = (const V *)t;
|
cannam@167
|
311 V tx = twp[0];
|
cannam@167
|
312 V tr = UNPCKL(tx, tx);
|
cannam@167
|
313 V ti = UNPCKH(tx, tx);
|
cannam@167
|
314 tr = VMUL(tr, sr);
|
cannam@167
|
315 sr = VBYI(sr);
|
cannam@167
|
316 return VFNMS(ti, sr, tr);
|
cannam@167
|
317 }
|
cannam@167
|
318 #else /* !FFTW_SINGLE */
|
cannam@167
|
319 # define VTW1(v,x) {TW_CEXP, v, x}
|
cannam@167
|
320 static inline V BYTW1(const R *t, V sr)
|
cannam@167
|
321 {
|
cannam@167
|
322 V tx = LD(t, 1, t);
|
cannam@167
|
323 return VZMUL(tx, sr);
|
cannam@167
|
324 }
|
cannam@167
|
325 static inline V BYTWJ1(const R *t, V sr)
|
cannam@167
|
326 {
|
cannam@167
|
327 V tx = LD(t, 1, t);
|
cannam@167
|
328 return VZMULJ(tx, sr);
|
cannam@167
|
329 }
|
cannam@167
|
330 #endif
|
cannam@167
|
331 #define TWVL1 (VL)
|
cannam@167
|
332
|
cannam@167
|
333 /* twiddle storage #2: twice the space, faster (when in cache) */
|
cannam@167
|
334 #ifdef FFTW_SINGLE
|
cannam@167
|
335 # define VTW2(v,x) \
|
cannam@167
|
336 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
cannam@167
|
337 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
cannam@167
|
338 #else /* !FFTW_SINGLE */
|
cannam@167
|
339 # define VTW2(v,x) \
|
cannam@167
|
340 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
|
cannam@167
|
341 #endif
|
cannam@167
|
342 #define TWVL2 (2 * VL)
|
cannam@167
|
343 static inline V BYTW2(const R *t, V sr)
|
cannam@167
|
344 {
|
cannam@167
|
345 const V *twp = (const V *)t;
|
cannam@167
|
346 V si = FLIP_RI(sr);
|
cannam@167
|
347 V tr = twp[0], ti = twp[1];
|
cannam@167
|
348 return VFMA(tr, sr, VMUL(ti, si));
|
cannam@167
|
349 }
|
cannam@167
|
350 static inline V BYTWJ2(const R *t, V sr)
|
cannam@167
|
351 {
|
cannam@167
|
352 const V *twp = (const V *)t;
|
cannam@167
|
353 V si = FLIP_RI(sr);
|
cannam@167
|
354 V tr = twp[0], ti = twp[1];
|
cannam@167
|
355 return VFNMS(ti, si, VMUL(tr, sr));
|
cannam@167
|
356 }
|
cannam@167
|
357
|
cannam@167
|
358 /* twiddle storage #3 */
|
cannam@167
|
359 #ifdef FFTW_SINGLE
|
cannam@167
|
360 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
cannam@167
|
361 # define TWVL3 (VL)
|
cannam@167
|
362 #else
|
cannam@167
|
363 # define VTW3(v,x) VTW1(v,x)
|
cannam@167
|
364 # define TWVL3 TWVL1
|
cannam@167
|
365 #endif
|
cannam@167
|
366
|
cannam@167
|
367 /* twiddle storage for split arrays */
|
cannam@167
|
368 #ifdef FFTW_SINGLE
|
cannam@167
|
369 # define VTWS(v,x) \
|
cannam@167
|
370 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
cannam@167
|
371 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
cannam@167
|
372 #else
|
cannam@167
|
373 # define VTWS(v,x) \
|
cannam@167
|
374 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
cannam@167
|
375 #endif
|
cannam@167
|
376 #define TWVLS (2 * VL)
|
cannam@167
|
377
|
cannam@167
|
378 #define VLEAVE() /* nothing */
|
cannam@167
|
379
|
cannam@167
|
380 #include "simd-common.h"
|