annotate src/fftw-3.3.8/simd-support/simd-generic128.h @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h
cannam@167 6 * with single & double precision by Erik Lindahl.
cannam@167 7 * Romain Dolbeau hereby places his modifications in the public domain.
cannam@167 8 * Erik Lindahl hereby places his modifications in the public domain.
cannam@167 9 *
cannam@167 10 * This program is free software; you can redistribute it and/or modify
cannam@167 11 * it under the terms of the GNU General Public License as published by
cannam@167 12 * the Free Software Foundation; either version 2 of the License, or
cannam@167 13 * (at your option) any later version.
cannam@167 14 *
cannam@167 15 * This program is distributed in the hope that it will be useful,
cannam@167 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 18 * GNU General Public License for more details.
cannam@167 19 *
cannam@167 20 * You should have received a copy of the GNU General Public License
cannam@167 21 * along with this program; if not, write to the Free Software
cannam@167 22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 23 *
cannam@167 24 */
cannam@167 25
cannam@167 26
cannam@167 27 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
cannam@167 28 # error "Generic simd128 only works in single or double precision"
cannam@167 29 #endif
cannam@167 30
cannam@167 31 #define SIMD_SUFFIX _generic_simd128 /* for renaming */
cannam@167 32
cannam@167 33 #ifdef FFTW_SINGLE
cannam@167 34 # define DS(d,s) s /* single-precision option */
cannam@167 35 # define VDUPL(x) (V){x[0],x[0],x[2],x[2]}
cannam@167 36 # define VDUPH(x) (V){x[1],x[1],x[3],x[3]}
cannam@167 37 # define DVK(var, val) V var = {val,val,val,val}
cannam@167 38 #else
cannam@167 39 # define DS(d,s) d /* double-precision option */
cannam@167 40 # define VDUPL(x) (V){x[0],x[0]}
cannam@167 41 # define VDUPH(x) (V){x[1],x[1]}
cannam@167 42 # define DVK(var, val) V var = {val, val}
cannam@167 43 #endif
cannam@167 44
cannam@167 45 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
cannam@167 46 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
cannam@167 47 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
cannam@167 48
cannam@167 49 typedef DS(double,float) V __attribute__ ((vector_size(16)));
cannam@167 50
cannam@167 51 #define VADD(a,b) ((a)+(b))
cannam@167 52 #define VSUB(a,b) ((a)-(b))
cannam@167 53 #define VMUL(a,b) ((a)*(b))
cannam@167 54
cannam@167 55
cannam@167 56 #define LDK(x) x
cannam@167 57
cannam@167 58 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
cannam@167 59 {
cannam@167 60 (void)aligned_like; /* UNUSED */
cannam@167 61 (void)ivs; /* UNUSED */
cannam@167 62 return *(const V *)x;
cannam@167 63 }
cannam@167 64
cannam@167 65 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
cannam@167 66 {
cannam@167 67 (void)aligned_like; /* UNUSED */
cannam@167 68 (void)ovs; /* UNUSED */
cannam@167 69 *(V *)x = v;
cannam@167 70 }
cannam@167 71
cannam@167 72 static inline V LD(const R *x, INT ivs, const R *aligned_like)
cannam@167 73 {
cannam@167 74 (void)aligned_like; /* UNUSED */
cannam@167 75 V res;
cannam@167 76 res[0] = x[0];
cannam@167 77 res[1] = x[1];
cannam@167 78 #ifdef FFTW_SINGLE
cannam@167 79 res[2] = x[ivs];
cannam@167 80 res[3] = x[ivs+1];
cannam@167 81 #endif
cannam@167 82 return res;
cannam@167 83 }
cannam@167 84
cannam@167 85 #ifdef FFTW_SINGLE
cannam@167 86 /* ST has to be separate due to the storage hack requiring reverse order */
cannam@167 87 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
cannam@167 88 {
cannam@167 89 (void)aligned_like; /* UNUSED */
cannam@167 90 (void)ovs; /* UNUSED */
cannam@167 91 *(x + ovs ) = v[2];
cannam@167 92 *(x + ovs + 1) = v[3];
cannam@167 93 *(x ) = v[0];
cannam@167 94 *(x + 1) = v[1];
cannam@167 95 }
cannam@167 96 #else
cannam@167 97 /* FFTW_DOUBLE */
cannam@167 98 # define ST STA
cannam@167 99 #endif
cannam@167 100
cannam@167 101 #ifdef FFTW_SINGLE
cannam@167 102 #define STM2 ST
cannam@167 103 #define STN2(x, v0, v1, ovs) /* nop */
cannam@167 104
cannam@167 105 static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
cannam@167 106 {
cannam@167 107 *(x ) = v0[0];
cannam@167 108 *(x + 1) = v1[0];
cannam@167 109 *(x + 2) = v2[0];
cannam@167 110 *(x + 3) = v3[0];
cannam@167 111 *(x + ovs ) = v0[1];
cannam@167 112 *(x + ovs + 1) = v1[1];
cannam@167 113 *(x + ovs + 2) = v2[1];
cannam@167 114 *(x + ovs + 3) = v3[1];
cannam@167 115 *(x + 2 * ovs ) = v0[2];
cannam@167 116 *(x + 2 * ovs + 1) = v1[2];
cannam@167 117 *(x + 2 * ovs + 2) = v2[2];
cannam@167 118 *(x + 2 * ovs + 3) = v3[2];
cannam@167 119 *(x + 3 * ovs ) = v0[3];
cannam@167 120 *(x + 3 * ovs + 1) = v1[3];
cannam@167 121 *(x + 3 * ovs + 2) = v2[3];
cannam@167 122 *(x + 3 * ovs + 3) = v3[3];
cannam@167 123 }
cannam@167 124 #define STM4(x, v, ovs, aligned_like) /* no-op */
cannam@167 125
cannam@167 126
cannam@167 127 #else
cannam@167 128 /* FFTW_DOUBLE */
cannam@167 129
cannam@167 130 #define STM2 STA
cannam@167 131 #define STN2(x, v0, v1, ovs) /* nop */
cannam@167 132
cannam@167 133 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
cannam@167 134 {
cannam@167 135 (void)aligned_like; /* UNUSED */
cannam@167 136 *(x) = v[0];
cannam@167 137 *(x+ovs) = v[1];
cannam@167 138 }
cannam@167 139 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
cannam@167 140 #endif
cannam@167 141
cannam@167 142
cannam@167 143 static inline V FLIP_RI(V x)
cannam@167 144 {
cannam@167 145 #ifdef FFTW_SINGLE
cannam@167 146 return (V){x[1],x[0],x[3],x[2]};
cannam@167 147 #else
cannam@167 148 return (V){x[1],x[0]};
cannam@167 149 #endif
cannam@167 150 }
cannam@167 151
cannam@167 152 static inline V VCONJ(V x)
cannam@167 153 {
cannam@167 154 #ifdef FFTW_SINGLE
cannam@167 155 return (V){x[0],-x[1],x[2],-x[3]};
cannam@167 156 #else
cannam@167 157 return (V){x[0],-x[1]};
cannam@167 158 #endif
cannam@167 159 }
cannam@167 160
cannam@167 161 static inline V VBYI(V x)
cannam@167 162 {
cannam@167 163 x = VCONJ(x);
cannam@167 164 x = FLIP_RI(x);
cannam@167 165 return x;
cannam@167 166 }
cannam@167 167
cannam@167 168 /* FMA support */
cannam@167 169 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
cannam@167 170 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
cannam@167 171 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
cannam@167 172 #define VFMAI(b, c) VADD(c, VBYI(b))
cannam@167 173 #define VFNMSI(b, c) VSUB(c, VBYI(b))
cannam@167 174 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
cannam@167 175 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
cannam@167 176 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
cannam@167 177
cannam@167 178 static inline V VZMUL(V tx, V sr)
cannam@167 179 {
cannam@167 180 V tr = VDUPL(tx);
cannam@167 181 V ti = VDUPH(tx);
cannam@167 182 tr = VMUL(sr, tr);
cannam@167 183 sr = VBYI(sr);
cannam@167 184 return VFMA(ti, sr, tr);
cannam@167 185 }
cannam@167 186
cannam@167 187 static inline V VZMULJ(V tx, V sr)
cannam@167 188 {
cannam@167 189 V tr = VDUPL(tx);
cannam@167 190 V ti = VDUPH(tx);
cannam@167 191 tr = VMUL(sr, tr);
cannam@167 192 sr = VBYI(sr);
cannam@167 193 return VFNMS(ti, sr, tr);
cannam@167 194 }
cannam@167 195
cannam@167 196 static inline V VZMULI(V tx, V sr)
cannam@167 197 {
cannam@167 198 V tr = VDUPL(tx);
cannam@167 199 V ti = VDUPH(tx);
cannam@167 200 ti = VMUL(ti, sr);
cannam@167 201 sr = VBYI(sr);
cannam@167 202 return VFMS(tr, sr, ti);
cannam@167 203 }
cannam@167 204
cannam@167 205 static inline V VZMULIJ(V tx, V sr)
cannam@167 206 {
cannam@167 207 V tr = VDUPL(tx);
cannam@167 208 V ti = VDUPH(tx);
cannam@167 209 ti = VMUL(ti, sr);
cannam@167 210 sr = VBYI(sr);
cannam@167 211 return VFMA(tr, sr, ti);
cannam@167 212 }
cannam@167 213
cannam@167 214 /* twiddle storage #1: compact, slower */
cannam@167 215 #ifdef FFTW_SINGLE
cannam@167 216 # define VTW1(v,x) \
cannam@167 217 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@167 218 static inline V BYTW1(const R *t, V sr)
cannam@167 219 {
cannam@167 220 return VZMUL(LDA(t, 2, t), sr);
cannam@167 221 }
cannam@167 222 static inline V BYTWJ1(const R *t, V sr)
cannam@167 223 {
cannam@167 224 return VZMULJ(LDA(t, 2, t), sr);
cannam@167 225 }
cannam@167 226 #else /* !FFTW_SINGLE */
cannam@167 227 # define VTW1(v,x) {TW_CEXP, v, x}
cannam@167 228 static inline V BYTW1(const R *t, V sr)
cannam@167 229 {
cannam@167 230 V tx = LD(t, 1, t);
cannam@167 231 return VZMUL(tx, sr);
cannam@167 232 }
cannam@167 233 static inline V BYTWJ1(const R *t, V sr)
cannam@167 234 {
cannam@167 235 V tx = LD(t, 1, t);
cannam@167 236 return VZMULJ(tx, sr);
cannam@167 237 }
cannam@167 238 #endif
cannam@167 239 #define TWVL1 (VL)
cannam@167 240
cannam@167 241 /* twiddle storage #2: twice the space, faster (when in cache) */
cannam@167 242 #ifdef FFTW_SINGLE
cannam@167 243 # define VTW2(v,x) \
cannam@167 244 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
cannam@167 245 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
cannam@167 246 #else /* !FFTW_SINGLE */
cannam@167 247 # define VTW2(v,x) \
cannam@167 248 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
cannam@167 249 #endif
cannam@167 250 #define TWVL2 (2 * VL)
cannam@167 251 static inline V BYTW2(const R *t, V sr)
cannam@167 252 {
cannam@167 253 const V *twp = (const V *)t;
cannam@167 254 V si = FLIP_RI(sr);
cannam@167 255 V tr = twp[0], ti = twp[1];
cannam@167 256 return VFMA(tr, sr, VMUL(ti, si));
cannam@167 257 }
cannam@167 258 static inline V BYTWJ2(const R *t, V sr)
cannam@167 259 {
cannam@167 260 const V *twp = (const V *)t;
cannam@167 261 V si = FLIP_RI(sr);
cannam@167 262 V tr = twp[0], ti = twp[1];
cannam@167 263 return VFNMS(ti, si, VMUL(tr, sr));
cannam@167 264 }
cannam@167 265
cannam@167 266 /* twiddle storage #3 */
cannam@167 267 #ifdef FFTW_SINGLE
cannam@167 268 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
cannam@167 269 # define TWVL3 (VL)
cannam@167 270 #else
cannam@167 271 # define VTW3(v,x) VTW1(v,x)
cannam@167 272 # define TWVL3 TWVL1
cannam@167 273 #endif
cannam@167 274
cannam@167 275 /* twiddle storage for split arrays */
cannam@167 276 #ifdef FFTW_SINGLE
cannam@167 277 # define VTWS(v,x) \
cannam@167 278 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
cannam@167 279 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
cannam@167 280 #else
cannam@167 281 # define VTWS(v,x) \
cannam@167 282 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@167 283 #endif
cannam@167 284 #define TWVLS (2 * VL)
cannam@167 285
cannam@167 286 #define VLEAVE() /* nothing */
cannam@167 287
cannam@167 288 #include "simd-common.h"