annotate src/fftw-3.3.8/reodft/reodft11e-r2hc.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
cannam@167 23 pre/post-processing ala FFTPACK. Use a trick from:
cannam@167 24
cannam@167 25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
cannam@167 26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
cannam@167 27
cannam@167 28 to re-express as an REDFT01 (DCT-III) problem.
cannam@167 29
cannam@167 30 NOTE: We no longer use this algorithm, because it turns out to suffer
cannam@167 31 a catastrophic loss of accuracy for certain inputs, apparently because
cannam@167 32 its post-processing multiplies the output by a cosine. Near the zero
cannam@167 33 of the cosine, the REDFT01 must produce a near-singular output.
cannam@167 34 */
cannam@167 35
cannam@167 36 #include "reodft/reodft.h"
cannam@167 37
cannam@167 38 typedef struct {
cannam@167 39 solver super;
cannam@167 40 } S;
cannam@167 41
cannam@167 42 typedef struct {
cannam@167 43 plan_rdft super;
cannam@167 44 plan *cld;
cannam@167 45 twid *td, *td2;
cannam@167 46 INT is, os;
cannam@167 47 INT n;
cannam@167 48 INT vl;
cannam@167 49 INT ivs, ovs;
cannam@167 50 rdft_kind kind;
cannam@167 51 } P;
cannam@167 52
cannam@167 53 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@167 54 {
cannam@167 55 const P *ego = (const P *) ego_;
cannam@167 56 INT is = ego->is, os = ego->os;
cannam@167 57 INT i, n = ego->n;
cannam@167 58 INT iv, vl = ego->vl;
cannam@167 59 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@167 60 R *W;
cannam@167 61 R *buf;
cannam@167 62 E cur;
cannam@167 63
cannam@167 64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@167 65
cannam@167 66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@167 67 /* I wish that this didn't require an extra pass. */
cannam@167 68 /* FIXME: use recursive/cascade summation for better stability? */
cannam@167 69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
cannam@167 70 for (i = n - 1; i > 0; --i) {
cannam@167 71 E curnew;
cannam@167 72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
cannam@167 73 cur = curnew;
cannam@167 74 }
cannam@167 75
cannam@167 76 W = ego->td->W;
cannam@167 77 for (i = 1; i < n - i; ++i) {
cannam@167 78 E a, b, apb, amb, wa, wb;
cannam@167 79 a = buf[i];
cannam@167 80 b = buf[n - i];
cannam@167 81 apb = a + b;
cannam@167 82 amb = a - b;
cannam@167 83 wa = W[2*i];
cannam@167 84 wb = W[2*i + 1];
cannam@167 85 buf[i] = wa * amb + wb * apb;
cannam@167 86 buf[n - i] = wa * apb - wb * amb;
cannam@167 87 }
cannam@167 88 if (i == n - i) {
cannam@167 89 buf[i] = K(2.0) * buf[i] * W[2*i];
cannam@167 90 }
cannam@167 91
cannam@167 92 {
cannam@167 93 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 94 cld->apply((plan *) cld, buf, buf);
cannam@167 95 }
cannam@167 96
cannam@167 97 W = ego->td2->W;
cannam@167 98 O[0] = W[0] * buf[0];
cannam@167 99 for (i = 1; i < n - i; ++i) {
cannam@167 100 E a, b;
cannam@167 101 INT k;
cannam@167 102 a = buf[i];
cannam@167 103 b = buf[n - i];
cannam@167 104 k = i + i;
cannam@167 105 O[os * (k - 1)] = W[k - 1] * (a - b);
cannam@167 106 O[os * k] = W[k] * (a + b);
cannam@167 107 }
cannam@167 108 if (i == n - i) {
cannam@167 109 O[os * (n - 1)] = W[n - 1] * buf[i];
cannam@167 110 }
cannam@167 111 }
cannam@167 112
cannam@167 113 X(ifree)(buf);
cannam@167 114 }
cannam@167 115
cannam@167 116 /* like for rodft01, rodft11 is obtained from redft11 by
cannam@167 117 reversing the input and flipping the sign of every other output. */
cannam@167 118 static void apply_ro11(const plan *ego_, R *I, R *O)
cannam@167 119 {
cannam@167 120 const P *ego = (const P *) ego_;
cannam@167 121 INT is = ego->is, os = ego->os;
cannam@167 122 INT i, n = ego->n;
cannam@167 123 INT iv, vl = ego->vl;
cannam@167 124 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@167 125 R *W;
cannam@167 126 R *buf;
cannam@167 127 E cur;
cannam@167 128
cannam@167 129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@167 130
cannam@167 131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@167 132 /* I wish that this didn't require an extra pass. */
cannam@167 133 /* FIXME: use recursive/cascade summation for better stability? */
cannam@167 134 buf[n - 1] = cur = K(2.0) * I[0];
cannam@167 135 for (i = n - 1; i > 0; --i) {
cannam@167 136 E curnew;
cannam@167 137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
cannam@167 138 cur = curnew;
cannam@167 139 }
cannam@167 140
cannam@167 141 W = ego->td->W;
cannam@167 142 for (i = 1; i < n - i; ++i) {
cannam@167 143 E a, b, apb, amb, wa, wb;
cannam@167 144 a = buf[i];
cannam@167 145 b = buf[n - i];
cannam@167 146 apb = a + b;
cannam@167 147 amb = a - b;
cannam@167 148 wa = W[2*i];
cannam@167 149 wb = W[2*i + 1];
cannam@167 150 buf[i] = wa * amb + wb * apb;
cannam@167 151 buf[n - i] = wa * apb - wb * amb;
cannam@167 152 }
cannam@167 153 if (i == n - i) {
cannam@167 154 buf[i] = K(2.0) * buf[i] * W[2*i];
cannam@167 155 }
cannam@167 156
cannam@167 157 {
cannam@167 158 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 159 cld->apply((plan *) cld, buf, buf);
cannam@167 160 }
cannam@167 161
cannam@167 162 W = ego->td2->W;
cannam@167 163 O[0] = W[0] * buf[0];
cannam@167 164 for (i = 1; i < n - i; ++i) {
cannam@167 165 E a, b;
cannam@167 166 INT k;
cannam@167 167 a = buf[i];
cannam@167 168 b = buf[n - i];
cannam@167 169 k = i + i;
cannam@167 170 O[os * (k - 1)] = W[k - 1] * (b - a);
cannam@167 171 O[os * k] = W[k] * (a + b);
cannam@167 172 }
cannam@167 173 if (i == n - i) {
cannam@167 174 O[os * (n - 1)] = -W[n - 1] * buf[i];
cannam@167 175 }
cannam@167 176 }
cannam@167 177
cannam@167 178 X(ifree)(buf);
cannam@167 179 }
cannam@167 180
cannam@167 181 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 182 {
cannam@167 183 P *ego = (P *) ego_;
cannam@167 184 static const tw_instr reodft010e_tw[] = {
cannam@167 185 { TW_COS, 0, 1 },
cannam@167 186 { TW_SIN, 0, 1 },
cannam@167 187 { TW_NEXT, 1, 0 }
cannam@167 188 };
cannam@167 189 static const tw_instr reodft11e_tw[] = {
cannam@167 190 { TW_COS, 1, 1 },
cannam@167 191 { TW_NEXT, 2, 0 }
cannam@167 192 };
cannam@167 193
cannam@167 194 X(plan_awake)(ego->cld, wakefulness);
cannam@167 195
cannam@167 196 X(twiddle_awake)(wakefulness,
cannam@167 197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
cannam@167 198 X(twiddle_awake)(wakefulness,
cannam@167 199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
cannam@167 200 }
cannam@167 201
cannam@167 202 static void destroy(plan *ego_)
cannam@167 203 {
cannam@167 204 P *ego = (P *) ego_;
cannam@167 205 X(plan_destroy_internal)(ego->cld);
cannam@167 206 }
cannam@167 207
cannam@167 208 static void print(const plan *ego_, printer *p)
cannam@167 209 {
cannam@167 210 const P *ego = (const P *) ego_;
cannam@167 211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
cannam@167 212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
cannam@167 213 }
cannam@167 214
cannam@167 215 static int applicable0(const solver *ego_, const problem *p_)
cannam@167 216 {
cannam@167 217 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 218
cannam@167 219 UNUSED(ego_);
cannam@167 220
cannam@167 221 return (1
cannam@167 222 && p->sz->rnk == 1
cannam@167 223 && p->vecsz->rnk <= 1
cannam@167 224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
cannam@167 225 );
cannam@167 226 }
cannam@167 227
cannam@167 228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@167 229 {
cannam@167 230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@167 231 }
cannam@167 232
cannam@167 233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 234 {
cannam@167 235 P *pln;
cannam@167 236 const problem_rdft *p;
cannam@167 237 plan *cld;
cannam@167 238 R *buf;
cannam@167 239 INT n;
cannam@167 240 opcnt ops;
cannam@167 241
cannam@167 242 static const plan_adt padt = {
cannam@167 243 X(rdft_solve), awake, print, destroy
cannam@167 244 };
cannam@167 245
cannam@167 246 if (!applicable(ego_, p_, plnr))
cannam@167 247 return (plan *)0;
cannam@167 248
cannam@167 249 p = (const problem_rdft *) p_;
cannam@167 250
cannam@167 251 n = p->sz->dims[0].n;
cannam@167 252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@167 253
cannam@167 254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
cannam@167 255 X(mktensor_0d)(),
cannam@167 256 buf, buf, R2HC));
cannam@167 257 X(ifree)(buf);
cannam@167 258 if (!cld)
cannam@167 259 return (plan *)0;
cannam@167 260
cannam@167 261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
cannam@167 262 pln->n = n;
cannam@167 263 pln->is = p->sz->dims[0].is;
cannam@167 264 pln->os = p->sz->dims[0].os;
cannam@167 265 pln->cld = cld;
cannam@167 266 pln->td = pln->td2 = 0;
cannam@167 267 pln->kind = p->kind[0];
cannam@167 268
cannam@167 269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@167 270
cannam@167 271 X(ops_zero)(&ops);
cannam@167 272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
cannam@167 273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
cannam@167 274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
cannam@167 275
cannam@167 276 X(ops_zero)(&pln->super.super.ops);
cannam@167 277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@167 278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@167 279
cannam@167 280 return &(pln->super.super);
cannam@167 281 }
cannam@167 282
cannam@167 283 /* constructor */
cannam@167 284 static solver *mksolver(void)
cannam@167 285 {
cannam@167 286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 287 S *slv = MKSOLVER(S, &sadt);
cannam@167 288 return &(slv->super);
cannam@167 289 }
cannam@167 290
cannam@167 291 void X(reodft11e_r2hc_register)(planner *p)
cannam@167 292 {
cannam@167 293 REGISTER_SOLVER(p, mksolver());
cannam@167 294 }