annotate src/fftw-3.3.8/dft/simd/common/t3bv_10.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:06:09 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 57 FP additions, 52 FP multiplications,
cannam@167 32 * (or, 39 additions, 34 multiplications, 18 fused multiply/add),
cannam@167 33 * 41 stack variables, 4 constants, and 20 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t3b.h"
cannam@167 36
cannam@167 37 static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 43 {
cannam@167 44 INT m;
cannam@167 45 R *x;
cannam@167 46 x = ii;
cannam@167 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@167 48 V T2, T3, T4, Ta, T5, T6, Tt, Td, Th;
cannam@167 49 T2 = LDW(&(W[0]));
cannam@167 50 T3 = LDW(&(W[TWVL * 2]));
cannam@167 51 T4 = VZMUL(T2, T3);
cannam@167 52 Ta = VZMULJ(T2, T3);
cannam@167 53 T5 = LDW(&(W[TWVL * 4]));
cannam@167 54 T6 = VZMULJ(T4, T5);
cannam@167 55 Tt = VZMULJ(T3, T5);
cannam@167 56 Td = VZMULJ(Ta, T5);
cannam@167 57 Th = VZMULJ(T2, T5);
cannam@167 58 {
cannam@167 59 V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1;
cannam@167 60 V T8, T7;
cannam@167 61 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 62 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 63 T8 = VZMUL(T6, T7);
cannam@167 64 T9 = VSUB(T1, T8);
cannam@167 65 TJ = VADD(T1, T8);
cannam@167 66 {
cannam@167 67 V Tp, Tx, Tr, Tv;
cannam@167 68 {
cannam@167 69 V To, Tw, Tq, Tu;
cannam@167 70 To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 71 Tp = VZMUL(T4, To);
cannam@167 72 Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 73 Tx = VZMUL(T2, Tw);
cannam@167 74 Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 75 Tr = VZMUL(T5, Tq);
cannam@167 76 Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 77 Tv = VZMUL(Tt, Tu);
cannam@167 78 }
cannam@167 79 Ts = VSUB(Tp, Tr);
cannam@167 80 Ty = VSUB(Tv, Tx);
cannam@167 81 Tz = VADD(Ts, Ty);
cannam@167 82 TN = VADD(Tp, Tr);
cannam@167 83 TO = VADD(Tv, Tx);
cannam@167 84 TP = VADD(TN, TO);
cannam@167 85 }
cannam@167 86 {
cannam@167 87 V Tc, Tl, Tf, Tj;
cannam@167 88 {
cannam@167 89 V Tb, Tk, Te, Ti;
cannam@167 90 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 91 Tc = VZMUL(Ta, Tb);
cannam@167 92 Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 93 Tl = VZMUL(T3, Tk);
cannam@167 94 Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 95 Tf = VZMUL(Td, Te);
cannam@167 96 Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 97 Tj = VZMUL(Th, Ti);
cannam@167 98 }
cannam@167 99 Tg = VSUB(Tc, Tf);
cannam@167 100 Tm = VSUB(Tj, Tl);
cannam@167 101 Tn = VADD(Tg, Tm);
cannam@167 102 TK = VADD(Tc, Tf);
cannam@167 103 TL = VADD(Tj, Tl);
cannam@167 104 TM = VADD(TK, TL);
cannam@167 105 }
cannam@167 106 {
cannam@167 107 V TC, TA, TB, TG, TI, TE, TF, TH, TD;
cannam@167 108 TC = VSUB(Tn, Tz);
cannam@167 109 TA = VADD(Tn, Tz);
cannam@167 110 TB = VFNMS(LDK(KP250000000), TA, T9);
cannam@167 111 TE = VSUB(Tg, Tm);
cannam@167 112 TF = VSUB(Ts, Ty);
cannam@167 113 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
cannam@167 114 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
cannam@167 115 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
cannam@167 116 TH = VFNMS(LDK(KP559016994), TC, TB);
cannam@167 117 ST(&(x[WS(rs, 3)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
cannam@167 118 ST(&(x[WS(rs, 7)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
cannam@167 119 TD = VFMA(LDK(KP559016994), TC, TB);
cannam@167 120 ST(&(x[WS(rs, 1)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
cannam@167 121 ST(&(x[WS(rs, 9)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
cannam@167 122 }
cannam@167 123 {
cannam@167 124 V TS, TQ, TR, TW, TY, TU, TV, TX, TT;
cannam@167 125 TS = VSUB(TM, TP);
cannam@167 126 TQ = VADD(TM, TP);
cannam@167 127 TR = VFNMS(LDK(KP250000000), TQ, TJ);
cannam@167 128 TU = VSUB(TN, TO);
cannam@167 129 TV = VSUB(TK, TL);
cannam@167 130 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
cannam@167 131 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
cannam@167 132 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
cannam@167 133 TX = VFMA(LDK(KP559016994), TS, TR);
cannam@167 134 ST(&(x[WS(rs, 4)]), VFNMSI(TY, TX), ms, &(x[0]));
cannam@167 135 ST(&(x[WS(rs, 6)]), VFMAI(TY, TX), ms, &(x[0]));
cannam@167 136 TT = VFNMS(LDK(KP559016994), TS, TR);
cannam@167 137 ST(&(x[WS(rs, 2)]), VFNMSI(TW, TT), ms, &(x[0]));
cannam@167 138 ST(&(x[WS(rs, 8)]), VFMAI(TW, TT), ms, &(x[0]));
cannam@167 139 }
cannam@167 140 }
cannam@167 141 }
cannam@167 142 }
cannam@167 143 VLEAVE();
cannam@167 144 }
cannam@167 145
cannam@167 146 static const tw_instr twinstr[] = {
cannam@167 147 VTW(0, 1),
cannam@167 148 VTW(0, 3),
cannam@167 149 VTW(0, 9),
cannam@167 150 {TW_NEXT, VL, 0}
cannam@167 151 };
cannam@167 152
cannam@167 153 static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 };
cannam@167 154
cannam@167 155 void XSIMD(codelet_t3bv_10) (planner *p) {
cannam@167 156 X(kdft_dit_register) (p, t3bv_10, &desc);
cannam@167 157 }
cannam@167 158 #else
cannam@167 159
cannam@167 160 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include dft/simd/t3b.h -sign 1 */
cannam@167 161
cannam@167 162 /*
cannam@167 163 * This function contains 57 FP additions, 42 FP multiplications,
cannam@167 164 * (or, 51 additions, 36 multiplications, 6 fused multiply/add),
cannam@167 165 * 41 stack variables, 4 constants, and 20 memory accesses
cannam@167 166 */
cannam@167 167 #include "dft/simd/t3b.h"
cannam@167 168
cannam@167 169 static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 170 {
cannam@167 171 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@167 172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 173 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 175 {
cannam@167 176 INT m;
cannam@167 177 R *x;
cannam@167 178 x = ii;
cannam@167 179 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@167 180 V T1, T2, T3, Ti, T6, T7, TA, Tb, To;
cannam@167 181 T1 = LDW(&(W[0]));
cannam@167 182 T2 = LDW(&(W[TWVL * 2]));
cannam@167 183 T3 = VZMULJ(T1, T2);
cannam@167 184 Ti = VZMUL(T1, T2);
cannam@167 185 T6 = LDW(&(W[TWVL * 4]));
cannam@167 186 T7 = VZMULJ(T3, T6);
cannam@167 187 TA = VZMULJ(Ti, T6);
cannam@167 188 Tb = VZMULJ(T1, T6);
cannam@167 189 To = VZMULJ(T2, T6);
cannam@167 190 {
cannam@167 191 V TD, TQ, Tn, Tt, Tx, TM, TN, TS, Ta, Tg, Tw, TJ, TK, TR, Tz;
cannam@167 192 V TC, TB;
cannam@167 193 Tz = LD(&(x[0]), ms, &(x[0]));
cannam@167 194 TB = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 195 TC = VZMUL(TA, TB);
cannam@167 196 TD = VSUB(Tz, TC);
cannam@167 197 TQ = VADD(Tz, TC);
cannam@167 198 {
cannam@167 199 V Tk, Ts, Tm, Tq;
cannam@167 200 {
cannam@167 201 V Tj, Tr, Tl, Tp;
cannam@167 202 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 203 Tk = VZMUL(Ti, Tj);
cannam@167 204 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 205 Ts = VZMUL(T1, Tr);
cannam@167 206 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 207 Tm = VZMUL(T6, Tl);
cannam@167 208 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 209 Tq = VZMUL(To, Tp);
cannam@167 210 }
cannam@167 211 Tn = VSUB(Tk, Tm);
cannam@167 212 Tt = VSUB(Tq, Ts);
cannam@167 213 Tx = VADD(Tn, Tt);
cannam@167 214 TM = VADD(Tk, Tm);
cannam@167 215 TN = VADD(Tq, Ts);
cannam@167 216 TS = VADD(TM, TN);
cannam@167 217 }
cannam@167 218 {
cannam@167 219 V T5, Tf, T9, Td;
cannam@167 220 {
cannam@167 221 V T4, Te, T8, Tc;
cannam@167 222 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 223 T5 = VZMUL(T3, T4);
cannam@167 224 Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 225 Tf = VZMUL(T2, Te);
cannam@167 226 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 227 T9 = VZMUL(T7, T8);
cannam@167 228 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 229 Td = VZMUL(Tb, Tc);
cannam@167 230 }
cannam@167 231 Ta = VSUB(T5, T9);
cannam@167 232 Tg = VSUB(Td, Tf);
cannam@167 233 Tw = VADD(Ta, Tg);
cannam@167 234 TJ = VADD(T5, T9);
cannam@167 235 TK = VADD(Td, Tf);
cannam@167 236 TR = VADD(TJ, TK);
cannam@167 237 }
cannam@167 238 {
cannam@167 239 V Ty, TE, TF, Tv, TI, Th, Tu, TH, TG;
cannam@167 240 Ty = VMUL(LDK(KP559016994), VSUB(Tw, Tx));
cannam@167 241 TE = VADD(Tw, Tx);
cannam@167 242 TF = VFNMS(LDK(KP250000000), TE, TD);
cannam@167 243 Th = VSUB(Ta, Tg);
cannam@167 244 Tu = VSUB(Tn, Tt);
cannam@167 245 Tv = VBYI(VFMA(LDK(KP951056516), Th, VMUL(LDK(KP587785252), Tu)));
cannam@167 246 TI = VBYI(VFNMS(LDK(KP951056516), Tu, VMUL(LDK(KP587785252), Th)));
cannam@167 247 ST(&(x[WS(rs, 5)]), VADD(TD, TE), ms, &(x[WS(rs, 1)]));
cannam@167 248 TH = VSUB(TF, Ty);
cannam@167 249 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
cannam@167 250 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
cannam@167 251 TG = VADD(Ty, TF);
cannam@167 252 ST(&(x[WS(rs, 1)]), VADD(Tv, TG), ms, &(x[WS(rs, 1)]));
cannam@167 253 ST(&(x[WS(rs, 9)]), VSUB(TG, Tv), ms, &(x[WS(rs, 1)]));
cannam@167 254 }
cannam@167 255 {
cannam@167 256 V TV, TT, TU, TP, TY, TL, TO, TX, TW;
cannam@167 257 TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
cannam@167 258 TT = VADD(TR, TS);
cannam@167 259 TU = VFNMS(LDK(KP250000000), TT, TQ);
cannam@167 260 TL = VSUB(TJ, TK);
cannam@167 261 TO = VSUB(TM, TN);
cannam@167 262 TP = VBYI(VFNMS(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
cannam@167 263 TY = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TO)));
cannam@167 264 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
cannam@167 265 TX = VADD(TV, TU);
cannam@167 266 ST(&(x[WS(rs, 4)]), VSUB(TX, TY), ms, &(x[0]));
cannam@167 267 ST(&(x[WS(rs, 6)]), VADD(TY, TX), ms, &(x[0]));
cannam@167 268 TW = VSUB(TU, TV);
cannam@167 269 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
cannam@167 270 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
cannam@167 271 }
cannam@167 272 }
cannam@167 273 }
cannam@167 274 }
cannam@167 275 VLEAVE();
cannam@167 276 }
cannam@167 277
cannam@167 278 static const tw_instr twinstr[] = {
cannam@167 279 VTW(0, 1),
cannam@167 280 VTW(0, 3),
cannam@167 281 VTW(0, 9),
cannam@167 282 {TW_NEXT, VL, 0}
cannam@167 283 };
cannam@167 284
cannam@167 285 static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 };
cannam@167 286
cannam@167 287 void XSIMD(codelet_t3bv_10) (planner *p) {
cannam@167 288 X(kdft_dit_register) (p, t3bv_10, &desc);
cannam@167 289 }
cannam@167 290 #endif