cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
cannam@167
|
22 /* Generated on Thu May 24 08:06:09 EDT 2018 */
|
cannam@167
|
23
|
cannam@167
|
24 #include "dft/codelet-dft.h"
|
cannam@167
|
25
|
cannam@167
|
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
cannam@167
|
27
|
cannam@167
|
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
|
cannam@167
|
29
|
cannam@167
|
30 /*
|
cannam@167
|
31 * This function contains 66 FP additions, 36 FP multiplications,
|
cannam@167
|
32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
|
cannam@167
|
33 * 34 stack variables, 1 constants, and 32 memory accesses
|
cannam@167
|
34 */
|
cannam@167
|
35 #include "dft/simd/ts.h"
|
cannam@167
|
36
|
cannam@167
|
37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
38 {
|
cannam@167
|
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
cannam@167
|
40 {
|
cannam@167
|
41 INT m;
|
cannam@167
|
42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
|
cannam@167
|
43 V T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts;
|
cannam@167
|
44 V TX, Ty, TZ, TV, T10;
|
cannam@167
|
45 T1 = LD(&(ri[0]), ms, &(ri[0]));
|
cannam@167
|
46 T1m = LD(&(ii[0]), ms, &(ii[0]));
|
cannam@167
|
47 {
|
cannam@167
|
48 V T3, T6, T4, T1k, T2, T5;
|
cannam@167
|
49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
cannam@167
|
50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
cannam@167
|
51 T2 = LDW(&(W[TWVL * 6]));
|
cannam@167
|
52 T4 = VMUL(T2, T3);
|
cannam@167
|
53 T1k = VMUL(T2, T6);
|
cannam@167
|
54 T5 = LDW(&(W[TWVL * 7]));
|
cannam@167
|
55 T7 = VFMA(T5, T6, T4);
|
cannam@167
|
56 T1l = VFNMS(T5, T3, T1k);
|
cannam@167
|
57 }
|
cannam@167
|
58 {
|
cannam@167
|
59 V Tg, Tj, Th, TR, Tf, Ti;
|
cannam@167
|
60 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
cannam@167
|
61 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
cannam@167
|
62 Tf = LDW(&(W[TWVL * 10]));
|
cannam@167
|
63 Th = VMUL(Tf, Tg);
|
cannam@167
|
64 TR = VMUL(Tf, Tj);
|
cannam@167
|
65 Ti = LDW(&(W[TWVL * 11]));
|
cannam@167
|
66 Tk = VFMA(Ti, Tj, Th);
|
cannam@167
|
67 TS = VFNMS(Ti, Tg, TR);
|
cannam@167
|
68 }
|
cannam@167
|
69 {
|
cannam@167
|
70 V Ta, Td, Tb, TP, T9, Tc;
|
cannam@167
|
71 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
cannam@167
|
72 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
cannam@167
|
73 T9 = LDW(&(W[TWVL * 2]));
|
cannam@167
|
74 Tb = VMUL(T9, Ta);
|
cannam@167
|
75 TP = VMUL(T9, Td);
|
cannam@167
|
76 Tc = LDW(&(W[TWVL * 3]));
|
cannam@167
|
77 Te = VFMA(Tc, Td, Tb);
|
cannam@167
|
78 TQ = VFNMS(Tc, Ta, TP);
|
cannam@167
|
79 }
|
cannam@167
|
80 {
|
cannam@167
|
81 V TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ;
|
cannam@167
|
82 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
83 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
84 TA = LDW(&(W[TWVL * 12]));
|
cannam@167
|
85 TC = VMUL(TA, TB);
|
cannam@167
|
86 T13 = VMUL(TA, TE);
|
cannam@167
|
87 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
88 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
89 TG = LDW(&(W[TWVL * 4]));
|
cannam@167
|
90 TI = VMUL(TG, TH);
|
cannam@167
|
91 T15 = VMUL(TG, TK);
|
cannam@167
|
92 TD = LDW(&(W[TWVL * 13]));
|
cannam@167
|
93 TF = VFMA(TD, TE, TC);
|
cannam@167
|
94 T14 = VFNMS(TD, TB, T13);
|
cannam@167
|
95 TJ = LDW(&(W[TWVL * 5]));
|
cannam@167
|
96 TL = VFMA(TJ, TK, TI);
|
cannam@167
|
97 T16 = VFNMS(TJ, TH, T15);
|
cannam@167
|
98 T12 = VSUB(TF, TL);
|
cannam@167
|
99 T17 = VSUB(T14, T16);
|
cannam@167
|
100 }
|
cannam@167
|
101 {
|
cannam@167
|
102 V To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw;
|
cannam@167
|
103 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
104 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
105 Tn = LDW(&(W[0]));
|
cannam@167
|
106 Tp = VMUL(Tn, To);
|
cannam@167
|
107 TW = VMUL(Tn, Tr);
|
cannam@167
|
108 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
109 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
110 Tt = LDW(&(W[TWVL * 8]));
|
cannam@167
|
111 Tv = VMUL(Tt, Tu);
|
cannam@167
|
112 TY = VMUL(Tt, Tx);
|
cannam@167
|
113 Tq = LDW(&(W[TWVL * 1]));
|
cannam@167
|
114 Ts = VFMA(Tq, Tr, Tp);
|
cannam@167
|
115 TX = VFNMS(Tq, To, TW);
|
cannam@167
|
116 Tw = LDW(&(W[TWVL * 9]));
|
cannam@167
|
117 Ty = VFMA(Tw, Tx, Tv);
|
cannam@167
|
118 TZ = VFNMS(Tw, Tu, TY);
|
cannam@167
|
119 TV = VSUB(Ts, Ty);
|
cannam@167
|
120 T10 = VSUB(TX, TZ);
|
cannam@167
|
121 }
|
cannam@167
|
122 {
|
cannam@167
|
123 V TU, T1a, T1t, T1v, T19, T1w, T1d, T1u;
|
cannam@167
|
124 {
|
cannam@167
|
125 V TO, TT, T1r, T1s;
|
cannam@167
|
126 TO = VSUB(T1, T7);
|
cannam@167
|
127 TT = VSUB(TQ, TS);
|
cannam@167
|
128 TU = VADD(TO, TT);
|
cannam@167
|
129 T1a = VSUB(TO, TT);
|
cannam@167
|
130 T1r = VSUB(T1m, T1l);
|
cannam@167
|
131 T1s = VSUB(Te, Tk);
|
cannam@167
|
132 T1t = VSUB(T1r, T1s);
|
cannam@167
|
133 T1v = VADD(T1s, T1r);
|
cannam@167
|
134 }
|
cannam@167
|
135 {
|
cannam@167
|
136 V T11, T18, T1b, T1c;
|
cannam@167
|
137 T11 = VADD(TV, T10);
|
cannam@167
|
138 T18 = VSUB(T12, T17);
|
cannam@167
|
139 T19 = VADD(T11, T18);
|
cannam@167
|
140 T1w = VSUB(T18, T11);
|
cannam@167
|
141 T1b = VSUB(T10, TV);
|
cannam@167
|
142 T1c = VADD(T12, T17);
|
cannam@167
|
143 T1d = VSUB(T1b, T1c);
|
cannam@167
|
144 T1u = VADD(T1b, T1c);
|
cannam@167
|
145 }
|
cannam@167
|
146 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
147 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
148 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
149 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
150 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
151 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
152 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
153 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
154 }
|
cannam@167
|
155 {
|
cannam@167
|
156 V Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i;
|
cannam@167
|
157 {
|
cannam@167
|
158 V T8, Tl, T1j, T1n;
|
cannam@167
|
159 T8 = VADD(T1, T7);
|
cannam@167
|
160 Tl = VADD(Te, Tk);
|
cannam@167
|
161 Tm = VADD(T8, Tl);
|
cannam@167
|
162 T1e = VSUB(T8, Tl);
|
cannam@167
|
163 T1j = VADD(TQ, TS);
|
cannam@167
|
164 T1n = VADD(T1l, T1m);
|
cannam@167
|
165 T1o = VADD(T1j, T1n);
|
cannam@167
|
166 T1q = VSUB(T1n, T1j);
|
cannam@167
|
167 }
|
cannam@167
|
168 {
|
cannam@167
|
169 V Tz, TM, T1f, T1g;
|
cannam@167
|
170 Tz = VADD(Ts, Ty);
|
cannam@167
|
171 TM = VADD(TF, TL);
|
cannam@167
|
172 TN = VADD(Tz, TM);
|
cannam@167
|
173 T1p = VSUB(TM, Tz);
|
cannam@167
|
174 T1f = VADD(TX, TZ);
|
cannam@167
|
175 T1g = VADD(T14, T16);
|
cannam@167
|
176 T1h = VSUB(T1f, T1g);
|
cannam@167
|
177 T1i = VADD(T1f, T1g);
|
cannam@167
|
178 }
|
cannam@167
|
179 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
|
cannam@167
|
180 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
|
cannam@167
|
181 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
|
cannam@167
|
182 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
|
cannam@167
|
183 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
|
cannam@167
|
184 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
|
cannam@167
|
185 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
|
cannam@167
|
186 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
|
cannam@167
|
187 }
|
cannam@167
|
188 }
|
cannam@167
|
189 }
|
cannam@167
|
190 VLEAVE();
|
cannam@167
|
191 }
|
cannam@167
|
192
|
cannam@167
|
193 static const tw_instr twinstr[] = {
|
cannam@167
|
194 VTW(0, 1),
|
cannam@167
|
195 VTW(0, 2),
|
cannam@167
|
196 VTW(0, 3),
|
cannam@167
|
197 VTW(0, 4),
|
cannam@167
|
198 VTW(0, 5),
|
cannam@167
|
199 VTW(0, 6),
|
cannam@167
|
200 VTW(0, 7),
|
cannam@167
|
201 {TW_NEXT, (2 * VL), 0}
|
cannam@167
|
202 };
|
cannam@167
|
203
|
cannam@167
|
204 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 };
|
cannam@167
|
205
|
cannam@167
|
206 void XSIMD(codelet_t1sv_8) (planner *p) {
|
cannam@167
|
207 X(kdft_dit_register) (p, t1sv_8, &desc);
|
cannam@167
|
208 }
|
cannam@167
|
209 #else
|
cannam@167
|
210
|
cannam@167
|
211 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
|
cannam@167
|
212
|
cannam@167
|
213 /*
|
cannam@167
|
214 * This function contains 66 FP additions, 32 FP multiplications,
|
cannam@167
|
215 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
|
cannam@167
|
216 * 28 stack variables, 1 constants, and 32 memory accesses
|
cannam@167
|
217 */
|
cannam@167
|
218 #include "dft/simd/ts.h"
|
cannam@167
|
219
|
cannam@167
|
220 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
221 {
|
cannam@167
|
222 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
cannam@167
|
223 {
|
cannam@167
|
224 INT m;
|
cannam@167
|
225 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
|
cannam@167
|
226 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
|
cannam@167
|
227 V TP;
|
cannam@167
|
228 {
|
cannam@167
|
229 V T1, T18, T6, T17;
|
cannam@167
|
230 T1 = LD(&(ri[0]), ms, &(ri[0]));
|
cannam@167
|
231 T18 = LD(&(ii[0]), ms, &(ii[0]));
|
cannam@167
|
232 {
|
cannam@167
|
233 V T3, T5, T2, T4;
|
cannam@167
|
234 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
cannam@167
|
235 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
cannam@167
|
236 T2 = LDW(&(W[TWVL * 6]));
|
cannam@167
|
237 T4 = LDW(&(W[TWVL * 7]));
|
cannam@167
|
238 T6 = VFMA(T2, T3, VMUL(T4, T5));
|
cannam@167
|
239 T17 = VFNMS(T4, T3, VMUL(T2, T5));
|
cannam@167
|
240 }
|
cannam@167
|
241 T7 = VADD(T1, T6);
|
cannam@167
|
242 T1e = VSUB(T18, T17);
|
cannam@167
|
243 TH = VSUB(T1, T6);
|
cannam@167
|
244 T19 = VADD(T17, T18);
|
cannam@167
|
245 }
|
cannam@167
|
246 {
|
cannam@167
|
247 V Tz, TS, TE, TT;
|
cannam@167
|
248 {
|
cannam@167
|
249 V Tw, Ty, Tv, Tx;
|
cannam@167
|
250 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
251 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
252 Tv = LDW(&(W[TWVL * 12]));
|
cannam@167
|
253 Tx = LDW(&(W[TWVL * 13]));
|
cannam@167
|
254 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
|
cannam@167
|
255 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
|
cannam@167
|
256 }
|
cannam@167
|
257 {
|
cannam@167
|
258 V TB, TD, TA, TC;
|
cannam@167
|
259 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
260 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
261 TA = LDW(&(W[TWVL * 4]));
|
cannam@167
|
262 TC = LDW(&(W[TWVL * 5]));
|
cannam@167
|
263 TE = VFMA(TA, TB, VMUL(TC, TD));
|
cannam@167
|
264 TT = VFNMS(TC, TB, VMUL(TA, TD));
|
cannam@167
|
265 }
|
cannam@167
|
266 TF = VADD(Tz, TE);
|
cannam@167
|
267 T13 = VADD(TS, TT);
|
cannam@167
|
268 TR = VSUB(Tz, TE);
|
cannam@167
|
269 TU = VSUB(TS, TT);
|
cannam@167
|
270 }
|
cannam@167
|
271 {
|
cannam@167
|
272 V Tc, TI, Th, TJ;
|
cannam@167
|
273 {
|
cannam@167
|
274 V T9, Tb, T8, Ta;
|
cannam@167
|
275 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
cannam@167
|
276 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
cannam@167
|
277 T8 = LDW(&(W[TWVL * 2]));
|
cannam@167
|
278 Ta = LDW(&(W[TWVL * 3]));
|
cannam@167
|
279 Tc = VFMA(T8, T9, VMUL(Ta, Tb));
|
cannam@167
|
280 TI = VFNMS(Ta, T9, VMUL(T8, Tb));
|
cannam@167
|
281 }
|
cannam@167
|
282 {
|
cannam@167
|
283 V Te, Tg, Td, Tf;
|
cannam@167
|
284 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
cannam@167
|
285 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
cannam@167
|
286 Td = LDW(&(W[TWVL * 10]));
|
cannam@167
|
287 Tf = LDW(&(W[TWVL * 11]));
|
cannam@167
|
288 Th = VFMA(Td, Te, VMUL(Tf, Tg));
|
cannam@167
|
289 TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
|
cannam@167
|
290 }
|
cannam@167
|
291 Ti = VADD(Tc, Th);
|
cannam@167
|
292 T1f = VSUB(Tc, Th);
|
cannam@167
|
293 TK = VSUB(TI, TJ);
|
cannam@167
|
294 T16 = VADD(TI, TJ);
|
cannam@167
|
295 }
|
cannam@167
|
296 {
|
cannam@167
|
297 V To, TN, Tt, TO;
|
cannam@167
|
298 {
|
cannam@167
|
299 V Tl, Tn, Tk, Tm;
|
cannam@167
|
300 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
301 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
302 Tk = LDW(&(W[0]));
|
cannam@167
|
303 Tm = LDW(&(W[TWVL * 1]));
|
cannam@167
|
304 To = VFMA(Tk, Tl, VMUL(Tm, Tn));
|
cannam@167
|
305 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
|
cannam@167
|
306 }
|
cannam@167
|
307 {
|
cannam@167
|
308 V Tq, Ts, Tp, Tr;
|
cannam@167
|
309 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
310 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
311 Tp = LDW(&(W[TWVL * 8]));
|
cannam@167
|
312 Tr = LDW(&(W[TWVL * 9]));
|
cannam@167
|
313 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
|
cannam@167
|
314 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
|
cannam@167
|
315 }
|
cannam@167
|
316 Tu = VADD(To, Tt);
|
cannam@167
|
317 T12 = VADD(TN, TO);
|
cannam@167
|
318 TM = VSUB(To, Tt);
|
cannam@167
|
319 TP = VSUB(TN, TO);
|
cannam@167
|
320 }
|
cannam@167
|
321 {
|
cannam@167
|
322 V Tj, TG, T1b, T1c;
|
cannam@167
|
323 Tj = VADD(T7, Ti);
|
cannam@167
|
324 TG = VADD(Tu, TF);
|
cannam@167
|
325 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
|
cannam@167
|
326 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
|
cannam@167
|
327 {
|
cannam@167
|
328 V T15, T1a, T11, T14;
|
cannam@167
|
329 T15 = VADD(T12, T13);
|
cannam@167
|
330 T1a = VADD(T16, T19);
|
cannam@167
|
331 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
|
cannam@167
|
332 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
|
cannam@167
|
333 T11 = VSUB(T7, Ti);
|
cannam@167
|
334 T14 = VSUB(T12, T13);
|
cannam@167
|
335 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
|
cannam@167
|
336 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
|
cannam@167
|
337 }
|
cannam@167
|
338 T1b = VSUB(TF, Tu);
|
cannam@167
|
339 T1c = VSUB(T19, T16);
|
cannam@167
|
340 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
|
cannam@167
|
341 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
|
cannam@167
|
342 {
|
cannam@167
|
343 V TX, T1g, T10, T1d, TY, TZ;
|
cannam@167
|
344 TX = VSUB(TH, TK);
|
cannam@167
|
345 T1g = VSUB(T1e, T1f);
|
cannam@167
|
346 TY = VSUB(TP, TM);
|
cannam@167
|
347 TZ = VADD(TR, TU);
|
cannam@167
|
348 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
|
cannam@167
|
349 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
|
cannam@167
|
350 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
351 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
352 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
353 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
354 }
|
cannam@167
|
355 {
|
cannam@167
|
356 V TL, T1i, TW, T1h, TQ, TV;
|
cannam@167
|
357 TL = VADD(TH, TK);
|
cannam@167
|
358 T1i = VADD(T1f, T1e);
|
cannam@167
|
359 TQ = VADD(TM, TP);
|
cannam@167
|
360 TV = VSUB(TR, TU);
|
cannam@167
|
361 TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
|
cannam@167
|
362 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
|
cannam@167
|
363 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
364 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
365 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
|
cannam@167
|
366 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
|
cannam@167
|
367 }
|
cannam@167
|
368 }
|
cannam@167
|
369 }
|
cannam@167
|
370 }
|
cannam@167
|
371 VLEAVE();
|
cannam@167
|
372 }
|
cannam@167
|
373
|
cannam@167
|
374 static const tw_instr twinstr[] = {
|
cannam@167
|
375 VTW(0, 1),
|
cannam@167
|
376 VTW(0, 2),
|
cannam@167
|
377 VTW(0, 3),
|
cannam@167
|
378 VTW(0, 4),
|
cannam@167
|
379 VTW(0, 5),
|
cannam@167
|
380 VTW(0, 6),
|
cannam@167
|
381 VTW(0, 7),
|
cannam@167
|
382 {TW_NEXT, (2 * VL), 0}
|
cannam@167
|
383 };
|
cannam@167
|
384
|
cannam@167
|
385 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 };
|
cannam@167
|
386
|
cannam@167
|
387 void XSIMD(codelet_t1sv_8) (planner *p) {
|
cannam@167
|
388 X(kdft_dit_register) (p, t1sv_8, &desc);
|
cannam@167
|
389 }
|
cannam@167
|
390 #endif
|