annotate src/fftw-3.3.8/dft/simd/common/t1sv_8.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:06:09 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 66 FP additions, 36 FP multiplications,
cannam@167 32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
cannam@167 33 * 34 stack variables, 1 constants, and 32 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/ts.h"
cannam@167 36
cannam@167 37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 40 {
cannam@167 41 INT m;
cannam@167 42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 43 V T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts;
cannam@167 44 V TX, Ty, TZ, TV, T10;
cannam@167 45 T1 = LD(&(ri[0]), ms, &(ri[0]));
cannam@167 46 T1m = LD(&(ii[0]), ms, &(ii[0]));
cannam@167 47 {
cannam@167 48 V T3, T6, T4, T1k, T2, T5;
cannam@167 49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
cannam@167 50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
cannam@167 51 T2 = LDW(&(W[TWVL * 6]));
cannam@167 52 T4 = VMUL(T2, T3);
cannam@167 53 T1k = VMUL(T2, T6);
cannam@167 54 T5 = LDW(&(W[TWVL * 7]));
cannam@167 55 T7 = VFMA(T5, T6, T4);
cannam@167 56 T1l = VFNMS(T5, T3, T1k);
cannam@167 57 }
cannam@167 58 {
cannam@167 59 V Tg, Tj, Th, TR, Tf, Ti;
cannam@167 60 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
cannam@167 61 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
cannam@167 62 Tf = LDW(&(W[TWVL * 10]));
cannam@167 63 Th = VMUL(Tf, Tg);
cannam@167 64 TR = VMUL(Tf, Tj);
cannam@167 65 Ti = LDW(&(W[TWVL * 11]));
cannam@167 66 Tk = VFMA(Ti, Tj, Th);
cannam@167 67 TS = VFNMS(Ti, Tg, TR);
cannam@167 68 }
cannam@167 69 {
cannam@167 70 V Ta, Td, Tb, TP, T9, Tc;
cannam@167 71 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
cannam@167 72 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
cannam@167 73 T9 = LDW(&(W[TWVL * 2]));
cannam@167 74 Tb = VMUL(T9, Ta);
cannam@167 75 TP = VMUL(T9, Td);
cannam@167 76 Tc = LDW(&(W[TWVL * 3]));
cannam@167 77 Te = VFMA(Tc, Td, Tb);
cannam@167 78 TQ = VFNMS(Tc, Ta, TP);
cannam@167 79 }
cannam@167 80 {
cannam@167 81 V TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ;
cannam@167 82 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
cannam@167 83 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
cannam@167 84 TA = LDW(&(W[TWVL * 12]));
cannam@167 85 TC = VMUL(TA, TB);
cannam@167 86 T13 = VMUL(TA, TE);
cannam@167 87 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
cannam@167 88 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
cannam@167 89 TG = LDW(&(W[TWVL * 4]));
cannam@167 90 TI = VMUL(TG, TH);
cannam@167 91 T15 = VMUL(TG, TK);
cannam@167 92 TD = LDW(&(W[TWVL * 13]));
cannam@167 93 TF = VFMA(TD, TE, TC);
cannam@167 94 T14 = VFNMS(TD, TB, T13);
cannam@167 95 TJ = LDW(&(W[TWVL * 5]));
cannam@167 96 TL = VFMA(TJ, TK, TI);
cannam@167 97 T16 = VFNMS(TJ, TH, T15);
cannam@167 98 T12 = VSUB(TF, TL);
cannam@167 99 T17 = VSUB(T14, T16);
cannam@167 100 }
cannam@167 101 {
cannam@167 102 V To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw;
cannam@167 103 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
cannam@167 104 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
cannam@167 105 Tn = LDW(&(W[0]));
cannam@167 106 Tp = VMUL(Tn, To);
cannam@167 107 TW = VMUL(Tn, Tr);
cannam@167 108 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
cannam@167 109 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
cannam@167 110 Tt = LDW(&(W[TWVL * 8]));
cannam@167 111 Tv = VMUL(Tt, Tu);
cannam@167 112 TY = VMUL(Tt, Tx);
cannam@167 113 Tq = LDW(&(W[TWVL * 1]));
cannam@167 114 Ts = VFMA(Tq, Tr, Tp);
cannam@167 115 TX = VFNMS(Tq, To, TW);
cannam@167 116 Tw = LDW(&(W[TWVL * 9]));
cannam@167 117 Ty = VFMA(Tw, Tx, Tv);
cannam@167 118 TZ = VFNMS(Tw, Tu, TY);
cannam@167 119 TV = VSUB(Ts, Ty);
cannam@167 120 T10 = VSUB(TX, TZ);
cannam@167 121 }
cannam@167 122 {
cannam@167 123 V TU, T1a, T1t, T1v, T19, T1w, T1d, T1u;
cannam@167 124 {
cannam@167 125 V TO, TT, T1r, T1s;
cannam@167 126 TO = VSUB(T1, T7);
cannam@167 127 TT = VSUB(TQ, TS);
cannam@167 128 TU = VADD(TO, TT);
cannam@167 129 T1a = VSUB(TO, TT);
cannam@167 130 T1r = VSUB(T1m, T1l);
cannam@167 131 T1s = VSUB(Te, Tk);
cannam@167 132 T1t = VSUB(T1r, T1s);
cannam@167 133 T1v = VADD(T1s, T1r);
cannam@167 134 }
cannam@167 135 {
cannam@167 136 V T11, T18, T1b, T1c;
cannam@167 137 T11 = VADD(TV, T10);
cannam@167 138 T18 = VSUB(T12, T17);
cannam@167 139 T19 = VADD(T11, T18);
cannam@167 140 T1w = VSUB(T18, T11);
cannam@167 141 T1b = VSUB(T10, TV);
cannam@167 142 T1c = VADD(T12, T17);
cannam@167 143 T1d = VSUB(T1b, T1c);
cannam@167 144 T1u = VADD(T1b, T1c);
cannam@167 145 }
cannam@167 146 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
cannam@167 147 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
cannam@167 148 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
cannam@167 149 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
cannam@167 150 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
cannam@167 151 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
cannam@167 152 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
cannam@167 153 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
cannam@167 154 }
cannam@167 155 {
cannam@167 156 V Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i;
cannam@167 157 {
cannam@167 158 V T8, Tl, T1j, T1n;
cannam@167 159 T8 = VADD(T1, T7);
cannam@167 160 Tl = VADD(Te, Tk);
cannam@167 161 Tm = VADD(T8, Tl);
cannam@167 162 T1e = VSUB(T8, Tl);
cannam@167 163 T1j = VADD(TQ, TS);
cannam@167 164 T1n = VADD(T1l, T1m);
cannam@167 165 T1o = VADD(T1j, T1n);
cannam@167 166 T1q = VSUB(T1n, T1j);
cannam@167 167 }
cannam@167 168 {
cannam@167 169 V Tz, TM, T1f, T1g;
cannam@167 170 Tz = VADD(Ts, Ty);
cannam@167 171 TM = VADD(TF, TL);
cannam@167 172 TN = VADD(Tz, TM);
cannam@167 173 T1p = VSUB(TM, Tz);
cannam@167 174 T1f = VADD(TX, TZ);
cannam@167 175 T1g = VADD(T14, T16);
cannam@167 176 T1h = VSUB(T1f, T1g);
cannam@167 177 T1i = VADD(T1f, T1g);
cannam@167 178 }
cannam@167 179 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
cannam@167 180 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
cannam@167 181 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
cannam@167 182 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
cannam@167 183 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
cannam@167 184 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
cannam@167 185 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
cannam@167 186 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
cannam@167 187 }
cannam@167 188 }
cannam@167 189 }
cannam@167 190 VLEAVE();
cannam@167 191 }
cannam@167 192
cannam@167 193 static const tw_instr twinstr[] = {
cannam@167 194 VTW(0, 1),
cannam@167 195 VTW(0, 2),
cannam@167 196 VTW(0, 3),
cannam@167 197 VTW(0, 4),
cannam@167 198 VTW(0, 5),
cannam@167 199 VTW(0, 6),
cannam@167 200 VTW(0, 7),
cannam@167 201 {TW_NEXT, (2 * VL), 0}
cannam@167 202 };
cannam@167 203
cannam@167 204 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 };
cannam@167 205
cannam@167 206 void XSIMD(codelet_t1sv_8) (planner *p) {
cannam@167 207 X(kdft_dit_register) (p, t1sv_8, &desc);
cannam@167 208 }
cannam@167 209 #else
cannam@167 210
cannam@167 211 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
cannam@167 212
cannam@167 213 /*
cannam@167 214 * This function contains 66 FP additions, 32 FP multiplications,
cannam@167 215 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
cannam@167 216 * 28 stack variables, 1 constants, and 32 memory accesses
cannam@167 217 */
cannam@167 218 #include "dft/simd/ts.h"
cannam@167 219
cannam@167 220 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 221 {
cannam@167 222 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 223 {
cannam@167 224 INT m;
cannam@167 225 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 226 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
cannam@167 227 V TP;
cannam@167 228 {
cannam@167 229 V T1, T18, T6, T17;
cannam@167 230 T1 = LD(&(ri[0]), ms, &(ri[0]));
cannam@167 231 T18 = LD(&(ii[0]), ms, &(ii[0]));
cannam@167 232 {
cannam@167 233 V T3, T5, T2, T4;
cannam@167 234 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
cannam@167 235 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
cannam@167 236 T2 = LDW(&(W[TWVL * 6]));
cannam@167 237 T4 = LDW(&(W[TWVL * 7]));
cannam@167 238 T6 = VFMA(T2, T3, VMUL(T4, T5));
cannam@167 239 T17 = VFNMS(T4, T3, VMUL(T2, T5));
cannam@167 240 }
cannam@167 241 T7 = VADD(T1, T6);
cannam@167 242 T1e = VSUB(T18, T17);
cannam@167 243 TH = VSUB(T1, T6);
cannam@167 244 T19 = VADD(T17, T18);
cannam@167 245 }
cannam@167 246 {
cannam@167 247 V Tz, TS, TE, TT;
cannam@167 248 {
cannam@167 249 V Tw, Ty, Tv, Tx;
cannam@167 250 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
cannam@167 251 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
cannam@167 252 Tv = LDW(&(W[TWVL * 12]));
cannam@167 253 Tx = LDW(&(W[TWVL * 13]));
cannam@167 254 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
cannam@167 255 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
cannam@167 256 }
cannam@167 257 {
cannam@167 258 V TB, TD, TA, TC;
cannam@167 259 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
cannam@167 260 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
cannam@167 261 TA = LDW(&(W[TWVL * 4]));
cannam@167 262 TC = LDW(&(W[TWVL * 5]));
cannam@167 263 TE = VFMA(TA, TB, VMUL(TC, TD));
cannam@167 264 TT = VFNMS(TC, TB, VMUL(TA, TD));
cannam@167 265 }
cannam@167 266 TF = VADD(Tz, TE);
cannam@167 267 T13 = VADD(TS, TT);
cannam@167 268 TR = VSUB(Tz, TE);
cannam@167 269 TU = VSUB(TS, TT);
cannam@167 270 }
cannam@167 271 {
cannam@167 272 V Tc, TI, Th, TJ;
cannam@167 273 {
cannam@167 274 V T9, Tb, T8, Ta;
cannam@167 275 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
cannam@167 276 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
cannam@167 277 T8 = LDW(&(W[TWVL * 2]));
cannam@167 278 Ta = LDW(&(W[TWVL * 3]));
cannam@167 279 Tc = VFMA(T8, T9, VMUL(Ta, Tb));
cannam@167 280 TI = VFNMS(Ta, T9, VMUL(T8, Tb));
cannam@167 281 }
cannam@167 282 {
cannam@167 283 V Te, Tg, Td, Tf;
cannam@167 284 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
cannam@167 285 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
cannam@167 286 Td = LDW(&(W[TWVL * 10]));
cannam@167 287 Tf = LDW(&(W[TWVL * 11]));
cannam@167 288 Th = VFMA(Td, Te, VMUL(Tf, Tg));
cannam@167 289 TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
cannam@167 290 }
cannam@167 291 Ti = VADD(Tc, Th);
cannam@167 292 T1f = VSUB(Tc, Th);
cannam@167 293 TK = VSUB(TI, TJ);
cannam@167 294 T16 = VADD(TI, TJ);
cannam@167 295 }
cannam@167 296 {
cannam@167 297 V To, TN, Tt, TO;
cannam@167 298 {
cannam@167 299 V Tl, Tn, Tk, Tm;
cannam@167 300 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
cannam@167 301 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
cannam@167 302 Tk = LDW(&(W[0]));
cannam@167 303 Tm = LDW(&(W[TWVL * 1]));
cannam@167 304 To = VFMA(Tk, Tl, VMUL(Tm, Tn));
cannam@167 305 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
cannam@167 306 }
cannam@167 307 {
cannam@167 308 V Tq, Ts, Tp, Tr;
cannam@167 309 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
cannam@167 310 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
cannam@167 311 Tp = LDW(&(W[TWVL * 8]));
cannam@167 312 Tr = LDW(&(W[TWVL * 9]));
cannam@167 313 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
cannam@167 314 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
cannam@167 315 }
cannam@167 316 Tu = VADD(To, Tt);
cannam@167 317 T12 = VADD(TN, TO);
cannam@167 318 TM = VSUB(To, Tt);
cannam@167 319 TP = VSUB(TN, TO);
cannam@167 320 }
cannam@167 321 {
cannam@167 322 V Tj, TG, T1b, T1c;
cannam@167 323 Tj = VADD(T7, Ti);
cannam@167 324 TG = VADD(Tu, TF);
cannam@167 325 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
cannam@167 326 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
cannam@167 327 {
cannam@167 328 V T15, T1a, T11, T14;
cannam@167 329 T15 = VADD(T12, T13);
cannam@167 330 T1a = VADD(T16, T19);
cannam@167 331 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
cannam@167 332 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
cannam@167 333 T11 = VSUB(T7, Ti);
cannam@167 334 T14 = VSUB(T12, T13);
cannam@167 335 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
cannam@167 336 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
cannam@167 337 }
cannam@167 338 T1b = VSUB(TF, Tu);
cannam@167 339 T1c = VSUB(T19, T16);
cannam@167 340 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
cannam@167 341 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
cannam@167 342 {
cannam@167 343 V TX, T1g, T10, T1d, TY, TZ;
cannam@167 344 TX = VSUB(TH, TK);
cannam@167 345 T1g = VSUB(T1e, T1f);
cannam@167 346 TY = VSUB(TP, TM);
cannam@167 347 TZ = VADD(TR, TU);
cannam@167 348 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
cannam@167 349 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
cannam@167 350 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
cannam@167 351 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
cannam@167 352 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
cannam@167 353 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
cannam@167 354 }
cannam@167 355 {
cannam@167 356 V TL, T1i, TW, T1h, TQ, TV;
cannam@167 357 TL = VADD(TH, TK);
cannam@167 358 T1i = VADD(T1f, T1e);
cannam@167 359 TQ = VADD(TM, TP);
cannam@167 360 TV = VSUB(TR, TU);
cannam@167 361 TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
cannam@167 362 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
cannam@167 363 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
cannam@167 364 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
cannam@167 365 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
cannam@167 366 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
cannam@167 367 }
cannam@167 368 }
cannam@167 369 }
cannam@167 370 }
cannam@167 371 VLEAVE();
cannam@167 372 }
cannam@167 373
cannam@167 374 static const tw_instr twinstr[] = {
cannam@167 375 VTW(0, 1),
cannam@167 376 VTW(0, 2),
cannam@167 377 VTW(0, 3),
cannam@167 378 VTW(0, 4),
cannam@167 379 VTW(0, 5),
cannam@167 380 VTW(0, 6),
cannam@167 381 VTW(0, 7),
cannam@167 382 {TW_NEXT, (2 * VL), 0}
cannam@167 383 };
cannam@167 384
cannam@167 385 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 };
cannam@167 386
cannam@167 387 void XSIMD(codelet_t1sv_8) (planner *p) {
cannam@167 388 X(kdft_dit_register) (p, t1sv_8, &desc);
cannam@167 389 }
cannam@167 390 #endif