annotate src/fftw-3.3.8/dft/simd/common/t1fv_16.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:28 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1fv_16 -include dft/simd/t1f.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 87 FP additions, 64 FP multiplications,
cannam@167 32 * (or, 53 additions, 30 multiplications, 34 fused multiply/add),
cannam@167 33 * 36 stack variables, 3 constants, and 32 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t1f.h"
cannam@167 36
cannam@167 37 static void t1fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@167 40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
cannam@167 42 {
cannam@167 43 INT m;
cannam@167 44 R *x;
cannam@167 45 x = ri;
cannam@167 46 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 47 V T4, TW, T9, T19, TD, TI, TZ, T1a, Tf, Tk, Tl, T13, T1c, Tq, Tv;
cannam@167 48 V Tw, T16, T1d, T1, T3, T2;
cannam@167 49 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 50 T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 51 T3 = BYTWJ(&(W[TWVL * 14]), T2);
cannam@167 52 T4 = VADD(T1, T3);
cannam@167 53 TW = VSUB(T1, T3);
cannam@167 54 {
cannam@167 55 V T6, T8, T5, T7;
cannam@167 56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 57 T6 = BYTWJ(&(W[TWVL * 6]), T5);
cannam@167 58 T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 59 T8 = BYTWJ(&(W[TWVL * 22]), T7);
cannam@167 60 T9 = VADD(T6, T8);
cannam@167 61 T19 = VSUB(T6, T8);
cannam@167 62 }
cannam@167 63 {
cannam@167 64 V TA, TH, TC, TF, TX, TY;
cannam@167 65 {
cannam@167 66 V Tz, TG, TB, TE;
cannam@167 67 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 68 TA = BYTWJ(&(W[TWVL * 26]), Tz);
cannam@167 69 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 70 TH = BYTWJ(&(W[TWVL * 18]), TG);
cannam@167 71 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 72 TC = BYTWJ(&(W[TWVL * 10]), TB);
cannam@167 73 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 74 TF = BYTWJ(&(W[TWVL * 2]), TE);
cannam@167 75 }
cannam@167 76 TD = VADD(TA, TC);
cannam@167 77 TI = VADD(TF, TH);
cannam@167 78 TX = VSUB(TF, TH);
cannam@167 79 TY = VSUB(TA, TC);
cannam@167 80 TZ = VADD(TX, TY);
cannam@167 81 T1a = VSUB(TY, TX);
cannam@167 82 }
cannam@167 83 {
cannam@167 84 V Tc, Tj, Te, Th, T11, T12;
cannam@167 85 {
cannam@167 86 V Tb, Ti, Td, Tg;
cannam@167 87 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 88 Tc = BYTWJ(&(W[0]), Tb);
cannam@167 89 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 90 Tj = BYTWJ(&(W[TWVL * 24]), Ti);
cannam@167 91 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 92 Te = BYTWJ(&(W[TWVL * 16]), Td);
cannam@167 93 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 94 Th = BYTWJ(&(W[TWVL * 8]), Tg);
cannam@167 95 }
cannam@167 96 Tf = VADD(Tc, Te);
cannam@167 97 Tk = VADD(Th, Tj);
cannam@167 98 Tl = VSUB(Tf, Tk);
cannam@167 99 T11 = VSUB(Tc, Te);
cannam@167 100 T12 = VSUB(Th, Tj);
cannam@167 101 T13 = VFNMS(LDK(KP414213562), T12, T11);
cannam@167 102 T1c = VFMA(LDK(KP414213562), T11, T12);
cannam@167 103 }
cannam@167 104 {
cannam@167 105 V Tn, Tu, Tp, Ts, T14, T15;
cannam@167 106 {
cannam@167 107 V Tm, Tt, To, Tr;
cannam@167 108 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@167 109 Tn = BYTWJ(&(W[TWVL * 28]), Tm);
cannam@167 110 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 111 Tu = BYTWJ(&(W[TWVL * 20]), Tt);
cannam@167 112 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 113 Tp = BYTWJ(&(W[TWVL * 12]), To);
cannam@167 114 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 115 Ts = BYTWJ(&(W[TWVL * 4]), Tr);
cannam@167 116 }
cannam@167 117 Tq = VADD(Tn, Tp);
cannam@167 118 Tv = VADD(Ts, Tu);
cannam@167 119 Tw = VSUB(Tq, Tv);
cannam@167 120 T14 = VSUB(Tn, Tp);
cannam@167 121 T15 = VSUB(Tu, Ts);
cannam@167 122 T16 = VFNMS(LDK(KP414213562), T15, T14);
cannam@167 123 T1d = VFMA(LDK(KP414213562), T14, T15);
cannam@167 124 }
cannam@167 125 {
cannam@167 126 V Ty, TM, TL, TN;
cannam@167 127 {
cannam@167 128 V Ta, Tx, TJ, TK;
cannam@167 129 Ta = VSUB(T4, T9);
cannam@167 130 Tx = VADD(Tl, Tw);
cannam@167 131 Ty = VFNMS(LDK(KP707106781), Tx, Ta);
cannam@167 132 TM = VFMA(LDK(KP707106781), Tx, Ta);
cannam@167 133 TJ = VSUB(TD, TI);
cannam@167 134 TK = VSUB(Tw, Tl);
cannam@167 135 TL = VFNMS(LDK(KP707106781), TK, TJ);
cannam@167 136 TN = VFMA(LDK(KP707106781), TK, TJ);
cannam@167 137 }
cannam@167 138 ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0]));
cannam@167 139 ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0]));
cannam@167 140 ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0]));
cannam@167 141 ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0]));
cannam@167 142 }
cannam@167 143 {
cannam@167 144 V T1k, T1o, T1n, T1p;
cannam@167 145 {
cannam@167 146 V T1i, T1j, T1l, T1m;
cannam@167 147 T1i = VFNMS(LDK(KP707106781), TZ, TW);
cannam@167 148 T1j = VADD(T1c, T1d);
cannam@167 149 T1k = VFNMS(LDK(KP923879532), T1j, T1i);
cannam@167 150 T1o = VFMA(LDK(KP923879532), T1j, T1i);
cannam@167 151 T1l = VFMA(LDK(KP707106781), T1a, T19);
cannam@167 152 T1m = VSUB(T16, T13);
cannam@167 153 T1n = VFNMS(LDK(KP923879532), T1m, T1l);
cannam@167 154 T1p = VFMA(LDK(KP923879532), T1m, T1l);
cannam@167 155 }
cannam@167 156 ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)]));
cannam@167 157 ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)]));
cannam@167 158 ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)]));
cannam@167 159 ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)]));
cannam@167 160 }
cannam@167 161 {
cannam@167 162 V TQ, TU, TT, TV;
cannam@167 163 {
cannam@167 164 V TO, TP, TR, TS;
cannam@167 165 TO = VADD(T4, T9);
cannam@167 166 TP = VADD(TI, TD);
cannam@167 167 TQ = VADD(TO, TP);
cannam@167 168 TU = VSUB(TO, TP);
cannam@167 169 TR = VADD(Tf, Tk);
cannam@167 170 TS = VADD(Tq, Tv);
cannam@167 171 TT = VADD(TR, TS);
cannam@167 172 TV = VSUB(TS, TR);
cannam@167 173 }
cannam@167 174 ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0]));
cannam@167 175 ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0]));
cannam@167 176 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
cannam@167 177 ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0]));
cannam@167 178 }
cannam@167 179 {
cannam@167 180 V T18, T1g, T1f, T1h;
cannam@167 181 {
cannam@167 182 V T10, T17, T1b, T1e;
cannam@167 183 T10 = VFMA(LDK(KP707106781), TZ, TW);
cannam@167 184 T17 = VADD(T13, T16);
cannam@167 185 T18 = VFNMS(LDK(KP923879532), T17, T10);
cannam@167 186 T1g = VFMA(LDK(KP923879532), T17, T10);
cannam@167 187 T1b = VFNMS(LDK(KP707106781), T1a, T19);
cannam@167 188 T1e = VSUB(T1c, T1d);
cannam@167 189 T1f = VFNMS(LDK(KP923879532), T1e, T1b);
cannam@167 190 T1h = VFMA(LDK(KP923879532), T1e, T1b);
cannam@167 191 }
cannam@167 192 ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)]));
cannam@167 193 ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)]));
cannam@167 194 ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)]));
cannam@167 195 ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)]));
cannam@167 196 }
cannam@167 197 }
cannam@167 198 }
cannam@167 199 VLEAVE();
cannam@167 200 }
cannam@167 201
cannam@167 202 static const tw_instr twinstr[] = {
cannam@167 203 VTW(0, 1),
cannam@167 204 VTW(0, 2),
cannam@167 205 VTW(0, 3),
cannam@167 206 VTW(0, 4),
cannam@167 207 VTW(0, 5),
cannam@167 208 VTW(0, 6),
cannam@167 209 VTW(0, 7),
cannam@167 210 VTW(0, 8),
cannam@167 211 VTW(0, 9),
cannam@167 212 VTW(0, 10),
cannam@167 213 VTW(0, 11),
cannam@167 214 VTW(0, 12),
cannam@167 215 VTW(0, 13),
cannam@167 216 VTW(0, 14),
cannam@167 217 VTW(0, 15),
cannam@167 218 {TW_NEXT, VL, 0}
cannam@167 219 };
cannam@167 220
cannam@167 221 static const ct_desc desc = { 16, XSIMD_STRING("t1fv_16"), twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 };
cannam@167 222
cannam@167 223 void XSIMD(codelet_t1fv_16) (planner *p) {
cannam@167 224 X(kdft_dit_register) (p, t1fv_16, &desc);
cannam@167 225 }
cannam@167 226 #else
cannam@167 227
cannam@167 228 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1fv_16 -include dft/simd/t1f.h */
cannam@167 229
cannam@167 230 /*
cannam@167 231 * This function contains 87 FP additions, 42 FP multiplications,
cannam@167 232 * (or, 83 additions, 38 multiplications, 4 fused multiply/add),
cannam@167 233 * 36 stack variables, 3 constants, and 32 memory accesses
cannam@167 234 */
cannam@167 235 #include "dft/simd/t1f.h"
cannam@167 236
cannam@167 237 static void t1fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 238 {
cannam@167 239 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@167 240 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
cannam@167 241 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 242 {
cannam@167 243 INT m;
cannam@167 244 R *x;
cannam@167 245 x = ri;
cannam@167 246 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 247 V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14;
cannam@167 248 V T15, Tm, TM, TG, TI, TH;
cannam@167 249 TG = LD(&(x[0]), ms, &(x[0]));
cannam@167 250 TH = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 251 TI = BYTWJ(&(W[TWVL * 14]), TH);
cannam@167 252 TJ = VSUB(TG, TI);
cannam@167 253 T10 = VADD(TG, TI);
cannam@167 254 {
cannam@167 255 V TA, TC, Tz, TB;
cannam@167 256 Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 257 TA = BYTWJ(&(W[TWVL * 6]), Tz);
cannam@167 258 TB = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 259 TC = BYTWJ(&(W[TWVL * 22]), TB);
cannam@167 260 TD = VSUB(TA, TC);
cannam@167 261 T11 = VADD(TA, TC);
cannam@167 262 }
cannam@167 263 {
cannam@167 264 V Tp, Tw, Tr, Tu, Ts, Tx;
cannam@167 265 {
cannam@167 266 V To, Tv, Tq, Tt;
cannam@167 267 To = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 268 Tp = BYTWJ(&(W[TWVL * 26]), To);
cannam@167 269 Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 270 Tw = BYTWJ(&(W[TWVL * 18]), Tv);
cannam@167 271 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 272 Tr = BYTWJ(&(W[TWVL * 10]), Tq);
cannam@167 273 Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 274 Tu = BYTWJ(&(W[TWVL * 2]), Tt);
cannam@167 275 }
cannam@167 276 T1b = VADD(Tp, Tr);
cannam@167 277 T1c = VADD(Tu, Tw);
cannam@167 278 Ts = VSUB(Tp, Tr);
cannam@167 279 Tx = VSUB(Tu, Tw);
cannam@167 280 Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx));
cannam@167 281 TK = VMUL(LDK(KP707106781), VADD(Tx, Ts));
cannam@167 282 }
cannam@167 283 {
cannam@167 284 V T2, T9, T4, T7, T5, Ta;
cannam@167 285 {
cannam@167 286 V T1, T8, T3, T6;
cannam@167 287 T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@167 288 T2 = BYTWJ(&(W[TWVL * 28]), T1);
cannam@167 289 T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 290 T9 = BYTWJ(&(W[TWVL * 20]), T8);
cannam@167 291 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 292 T4 = BYTWJ(&(W[TWVL * 12]), T3);
cannam@167 293 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 294 T7 = BYTWJ(&(W[TWVL * 4]), T6);
cannam@167 295 }
cannam@167 296 T16 = VADD(T2, T4);
cannam@167 297 T17 = VADD(T7, T9);
cannam@167 298 T18 = VSUB(T16, T17);
cannam@167 299 T5 = VSUB(T2, T4);
cannam@167 300 Ta = VSUB(T7, T9);
cannam@167 301 Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5));
cannam@167 302 TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta));
cannam@167 303 }
cannam@167 304 {
cannam@167 305 V Td, Tk, Tf, Ti, Tg, Tl;
cannam@167 306 {
cannam@167 307 V Tc, Tj, Te, Th;
cannam@167 308 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 309 Td = BYTWJ(&(W[0]), Tc);
cannam@167 310 Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 311 Tk = BYTWJ(&(W[TWVL * 24]), Tj);
cannam@167 312 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 313 Tf = BYTWJ(&(W[TWVL * 16]), Te);
cannam@167 314 Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 315 Ti = BYTWJ(&(W[TWVL * 8]), Th);
cannam@167 316 }
cannam@167 317 T13 = VADD(Td, Tf);
cannam@167 318 T14 = VADD(Ti, Tk);
cannam@167 319 T15 = VSUB(T13, T14);
cannam@167 320 Tg = VSUB(Td, Tf);
cannam@167 321 Tl = VSUB(Ti, Tk);
cannam@167 322 Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl));
cannam@167 323 TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg));
cannam@167 324 }
cannam@167 325 {
cannam@167 326 V T1a, T1g, T1f, T1h;
cannam@167 327 {
cannam@167 328 V T12, T19, T1d, T1e;
cannam@167 329 T12 = VSUB(T10, T11);
cannam@167 330 T19 = VMUL(LDK(KP707106781), VADD(T15, T18));
cannam@167 331 T1a = VADD(T12, T19);
cannam@167 332 T1g = VSUB(T12, T19);
cannam@167 333 T1d = VSUB(T1b, T1c);
cannam@167 334 T1e = VMUL(LDK(KP707106781), VSUB(T18, T15));
cannam@167 335 T1f = VBYI(VADD(T1d, T1e));
cannam@167 336 T1h = VBYI(VSUB(T1e, T1d));
cannam@167 337 }
cannam@167 338 ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0]));
cannam@167 339 ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0]));
cannam@167 340 ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0]));
cannam@167 341 ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0]));
cannam@167 342 }
cannam@167 343 {
cannam@167 344 V T1k, T1o, T1n, T1p;
cannam@167 345 {
cannam@167 346 V T1i, T1j, T1l, T1m;
cannam@167 347 T1i = VADD(T10, T11);
cannam@167 348 T1j = VADD(T1c, T1b);
cannam@167 349 T1k = VADD(T1i, T1j);
cannam@167 350 T1o = VSUB(T1i, T1j);
cannam@167 351 T1l = VADD(T13, T14);
cannam@167 352 T1m = VADD(T16, T17);
cannam@167 353 T1n = VADD(T1l, T1m);
cannam@167 354 T1p = VBYI(VSUB(T1m, T1l));
cannam@167 355 }
cannam@167 356 ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0]));
cannam@167 357 ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0]));
cannam@167 358 ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0]));
cannam@167 359 ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0]));
cannam@167 360 }
cannam@167 361 {
cannam@167 362 V TF, TQ, TP, TR;
cannam@167 363 {
cannam@167 364 V Tn, TE, TL, TO;
cannam@167 365 Tn = VSUB(Tb, Tm);
cannam@167 366 TE = VSUB(Ty, TD);
cannam@167 367 TF = VBYI(VSUB(Tn, TE));
cannam@167 368 TQ = VBYI(VADD(TE, Tn));
cannam@167 369 TL = VADD(TJ, TK);
cannam@167 370 TO = VADD(TM, TN);
cannam@167 371 TP = VSUB(TL, TO);
cannam@167 372 TR = VADD(TL, TO);
cannam@167 373 }
cannam@167 374 ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)]));
cannam@167 375 ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)]));
cannam@167 376 ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)]));
cannam@167 377 ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)]));
cannam@167 378 }
cannam@167 379 {
cannam@167 380 V TU, TY, TX, TZ;
cannam@167 381 {
cannam@167 382 V TS, TT, TV, TW;
cannam@167 383 TS = VSUB(TJ, TK);
cannam@167 384 TT = VADD(Tm, Tb);
cannam@167 385 TU = VADD(TS, TT);
cannam@167 386 TY = VSUB(TS, TT);
cannam@167 387 TV = VADD(TD, Ty);
cannam@167 388 TW = VSUB(TN, TM);
cannam@167 389 TX = VBYI(VADD(TV, TW));
cannam@167 390 TZ = VBYI(VSUB(TW, TV));
cannam@167 391 }
cannam@167 392 ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)]));
cannam@167 393 ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)]));
cannam@167 394 ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)]));
cannam@167 395 ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)]));
cannam@167 396 }
cannam@167 397 }
cannam@167 398 }
cannam@167 399 VLEAVE();
cannam@167 400 }
cannam@167 401
cannam@167 402 static const tw_instr twinstr[] = {
cannam@167 403 VTW(0, 1),
cannam@167 404 VTW(0, 2),
cannam@167 405 VTW(0, 3),
cannam@167 406 VTW(0, 4),
cannam@167 407 VTW(0, 5),
cannam@167 408 VTW(0, 6),
cannam@167 409 VTW(0, 7),
cannam@167 410 VTW(0, 8),
cannam@167 411 VTW(0, 9),
cannam@167 412 VTW(0, 10),
cannam@167 413 VTW(0, 11),
cannam@167 414 VTW(0, 12),
cannam@167 415 VTW(0, 13),
cannam@167 416 VTW(0, 14),
cannam@167 417 VTW(0, 15),
cannam@167 418 {TW_NEXT, VL, 0}
cannam@167 419 };
cannam@167 420
cannam@167 421 static const ct_desc desc = { 16, XSIMD_STRING("t1fv_16"), twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 };
cannam@167 422
cannam@167 423 void XSIMD(codelet_t1fv_16) (planner *p) {
cannam@167 424 X(kdft_dit_register) (p, t1fv_16, &desc);
cannam@167 425 }
cannam@167 426 #endif