annotate src/fftw-3.3.8/dft/simd/common/t1bv_9.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:58 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include dft/simd/t1b.h -sign 1 */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 54 FP additions, 54 FP multiplications,
cannam@167 32 * (or, 20 additions, 20 multiplications, 34 fused multiply/add),
cannam@167 33 * 50 stack variables, 19 constants, and 18 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t1b.h"
cannam@167 36
cannam@167 37 static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
cannam@167 40 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
cannam@167 41 DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
cannam@167 42 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
cannam@167 43 DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
cannam@167 44 DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
cannam@167 45 DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
cannam@167 46 DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
cannam@167 47 DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
cannam@167 48 DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
cannam@167 49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
cannam@167 50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 51 DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
cannam@167 52 DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
cannam@167 53 DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
cannam@167 54 DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
cannam@167 55 DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
cannam@167 56 DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
cannam@167 57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 58 {
cannam@167 59 INT m;
cannam@167 60 R *x;
cannam@167 61 x = ii;
cannam@167 62 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
cannam@167 63 V T1, T6, Tx, TO, TP, Tf, Tp, Tk, Tl, Tq, Tu, TD, TC, TA, Tz;
cannam@167 64 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 65 {
cannam@167 66 V T3, T5, T2, T4;
cannam@167 67 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 68 T3 = BYTW(&(W[TWVL * 4]), T2);
cannam@167 69 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 70 T5 = BYTW(&(W[TWVL * 10]), T4);
cannam@167 71 T6 = VADD(T3, T5);
cannam@167 72 Tx = VSUB(T3, T5);
cannam@167 73 }
cannam@167 74 {
cannam@167 75 V T9, Tn, Tb, Td, Te, Th, Tj, To, T8, Tm;
cannam@167 76 T8 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 77 T9 = BYTW(&(W[TWVL * 2]), T8);
cannam@167 78 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 79 Tn = BYTW(&(W[0]), Tm);
cannam@167 80 {
cannam@167 81 V Ta, Tc, Tg, Ti;
cannam@167 82 Ta = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 83 Tb = BYTW(&(W[TWVL * 8]), Ta);
cannam@167 84 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 85 Td = BYTW(&(W[TWVL * 14]), Tc);
cannam@167 86 Te = VADD(Tb, Td);
cannam@167 87 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 88 Th = BYTW(&(W[TWVL * 6]), Tg);
cannam@167 89 Ti = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 90 Tj = BYTW(&(W[TWVL * 12]), Ti);
cannam@167 91 To = VADD(Th, Tj);
cannam@167 92 }
cannam@167 93 TO = VADD(Tn, To);
cannam@167 94 TP = VADD(T9, Te);
cannam@167 95 Tf = VFNMS(LDK(KP500000000), Te, T9);
cannam@167 96 Tp = VFNMS(LDK(KP500000000), To, Tn);
cannam@167 97 Tk = VSUB(Th, Tj);
cannam@167 98 Tl = VSUB(Td, Tb);
cannam@167 99 Tq = VFNMS(LDK(KP586256827), Tp, Tl);
cannam@167 100 Tu = VFNMS(LDK(KP439692620), Tk, Tf);
cannam@167 101 TD = VFNMS(LDK(KP726681596), Tk, Tp);
cannam@167 102 TC = VFMA(LDK(KP203604859), Tf, Tl);
cannam@167 103 TA = VFMA(LDK(KP968908795), Tp, Tk);
cannam@167 104 Tz = VFNMS(LDK(KP152703644), Tl, Tf);
cannam@167 105 }
cannam@167 106 {
cannam@167 107 V TS, TN, TQ, TR;
cannam@167 108 TS = VMUL(LDK(KP866025403), VSUB(TO, TP));
cannam@167 109 TN = VADD(T1, T6);
cannam@167 110 TQ = VADD(TO, TP);
cannam@167 111 TR = VFNMS(LDK(KP500000000), TQ, TN);
cannam@167 112 ST(&(x[WS(rs, 3)]), VFMAI(TS, TR), ms, &(x[WS(rs, 1)]));
cannam@167 113 ST(&(x[0]), VADD(TQ, TN), ms, &(x[0]));
cannam@167 114 ST(&(x[WS(rs, 6)]), VFNMSI(TS, TR), ms, &(x[0]));
cannam@167 115 }
cannam@167 116 {
cannam@167 117 V Ts, Tw, TJ, TM, T7, TF, TL, Tr, Tv;
cannam@167 118 Tr = VFNMS(LDK(KP347296355), Tq, Tk);
cannam@167 119 Ts = VFNMS(LDK(KP907603734), Tr, Tf);
cannam@167 120 Tv = VFNMS(LDK(KP420276625), Tu, Tl);
cannam@167 121 Tw = VFNMS(LDK(KP826351822), Tv, Tp);
cannam@167 122 {
cannam@167 123 V TH, TI, TE, TB;
cannam@167 124 TH = VFNMS(LDK(KP898197570), TD, TC);
cannam@167 125 TI = VFMA(LDK(KP673648177), TA, Tz);
cannam@167 126 TJ = VFMA(LDK(KP666666666), TI, TH);
cannam@167 127 TM = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tx, TI));
cannam@167 128 T7 = VFNMS(LDK(KP500000000), T6, T1);
cannam@167 129 TE = VFMA(LDK(KP898197570), TD, TC);
cannam@167 130 TB = VFNMS(LDK(KP673648177), TA, Tz);
cannam@167 131 TF = VFNMS(LDK(KP500000000), TE, TB);
cannam@167 132 TL = VFMA(LDK(KP852868531), TE, T7);
cannam@167 133 }
cannam@167 134 ST(&(x[WS(rs, 1)]), VFMAI(TM, TL), ms, &(x[WS(rs, 1)]));
cannam@167 135 ST(&(x[WS(rs, 8)]), VFNMSI(TM, TL), ms, &(x[0]));
cannam@167 136 {
cannam@167 137 V Tt, Ty, TG, TK;
cannam@167 138 Tt = VFNMS(LDK(KP939692620), Ts, T7);
cannam@167 139 Ty = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tx, Tw));
cannam@167 140 ST(&(x[WS(rs, 7)]), VFNMSI(Ty, Tt), ms, &(x[WS(rs, 1)]));
cannam@167 141 ST(&(x[WS(rs, 2)]), VFMAI(Ty, Tt), ms, &(x[0]));
cannam@167 142 TG = VFMA(LDK(KP852868531), TF, T7);
cannam@167 143 TK = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TJ, Tx));
cannam@167 144 ST(&(x[WS(rs, 4)]), VFMAI(TK, TG), ms, &(x[0]));
cannam@167 145 ST(&(x[WS(rs, 5)]), VFNMSI(TK, TG), ms, &(x[WS(rs, 1)]));
cannam@167 146 }
cannam@167 147 }
cannam@167 148 }
cannam@167 149 }
cannam@167 150 VLEAVE();
cannam@167 151 }
cannam@167 152
cannam@167 153 static const tw_instr twinstr[] = {
cannam@167 154 VTW(0, 1),
cannam@167 155 VTW(0, 2),
cannam@167 156 VTW(0, 3),
cannam@167 157 VTW(0, 4),
cannam@167 158 VTW(0, 5),
cannam@167 159 VTW(0, 6),
cannam@167 160 VTW(0, 7),
cannam@167 161 VTW(0, 8),
cannam@167 162 {TW_NEXT, VL, 0}
cannam@167 163 };
cannam@167 164
cannam@167 165 static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 };
cannam@167 166
cannam@167 167 void XSIMD(codelet_t1bv_9) (planner *p) {
cannam@167 168 X(kdft_dit_register) (p, t1bv_9, &desc);
cannam@167 169 }
cannam@167 170 #else
cannam@167 171
cannam@167 172 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include dft/simd/t1b.h -sign 1 */
cannam@167 173
cannam@167 174 /*
cannam@167 175 * This function contains 54 FP additions, 42 FP multiplications,
cannam@167 176 * (or, 38 additions, 26 multiplications, 16 fused multiply/add),
cannam@167 177 * 38 stack variables, 14 constants, and 18 memory accesses
cannam@167 178 */
cannam@167 179 #include "dft/simd/t1b.h"
cannam@167 180
cannam@167 181 static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 182 {
cannam@167 183 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
cannam@167 184 DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
cannam@167 185 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
cannam@167 186 DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
cannam@167 187 DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
cannam@167 188 DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
cannam@167 189 DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
cannam@167 190 DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
cannam@167 191 DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
cannam@167 192 DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
cannam@167 193 DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
cannam@167 194 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
cannam@167 195 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 196 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 197 {
cannam@167 198 INT m;
cannam@167 199 R *x;
cannam@167 200 x = ii;
cannam@167 201 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
cannam@167 202 V T1, T6, Tu, Tg, Tf, TD, Tq, Tp, TE;
cannam@167 203 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 204 {
cannam@167 205 V T3, T5, T2, T4;
cannam@167 206 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 207 T3 = BYTW(&(W[TWVL * 4]), T2);
cannam@167 208 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 209 T5 = BYTW(&(W[TWVL * 10]), T4);
cannam@167 210 T6 = VADD(T3, T5);
cannam@167 211 Tu = VMUL(LDK(KP866025403), VSUB(T3, T5));
cannam@167 212 }
cannam@167 213 {
cannam@167 214 V T9, Td, Tb, T8, Tc, Ta, Te;
cannam@167 215 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 216 T9 = BYTW(&(W[0]), T8);
cannam@167 217 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 218 Td = BYTW(&(W[TWVL * 12]), Tc);
cannam@167 219 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 220 Tb = BYTW(&(W[TWVL * 6]), Ta);
cannam@167 221 Tg = VSUB(Tb, Td);
cannam@167 222 Te = VADD(Tb, Td);
cannam@167 223 Tf = VFNMS(LDK(KP500000000), Te, T9);
cannam@167 224 TD = VADD(T9, Te);
cannam@167 225 }
cannam@167 226 {
cannam@167 227 V Tj, Tn, Tl, Ti, Tm, Tk, To;
cannam@167 228 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 229 Tj = BYTW(&(W[TWVL * 2]), Ti);
cannam@167 230 Tm = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 231 Tn = BYTW(&(W[TWVL * 14]), Tm);
cannam@167 232 Tk = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 233 Tl = BYTW(&(W[TWVL * 8]), Tk);
cannam@167 234 Tq = VSUB(Tl, Tn);
cannam@167 235 To = VADD(Tl, Tn);
cannam@167 236 Tp = VFNMS(LDK(KP500000000), To, Tj);
cannam@167 237 TE = VADD(Tj, To);
cannam@167 238 }
cannam@167 239 {
cannam@167 240 V TF, TG, TH, TI;
cannam@167 241 TF = VBYI(VMUL(LDK(KP866025403), VSUB(TD, TE)));
cannam@167 242 TG = VADD(T1, T6);
cannam@167 243 TH = VADD(TD, TE);
cannam@167 244 TI = VFNMS(LDK(KP500000000), TH, TG);
cannam@167 245 ST(&(x[WS(rs, 3)]), VADD(TF, TI), ms, &(x[WS(rs, 1)]));
cannam@167 246 ST(&(x[0]), VADD(TG, TH), ms, &(x[0]));
cannam@167 247 ST(&(x[WS(rs, 6)]), VSUB(TI, TF), ms, &(x[0]));
cannam@167 248 }
cannam@167 249 {
cannam@167 250 V TC, Tv, Tw, Tx, Th, Tr, Ts, T7, TB;
cannam@167 251 TC = VBYI(VSUB(VFMA(LDK(KP984807753), Tf, VFMA(LDK(KP813797681), Tq, VFNMS(LDK(KP150383733), Tg, VMUL(LDK(KP342020143), Tp)))), Tu));
cannam@167 252 Tv = VFMA(LDK(KP663413948), Tg, VMUL(LDK(KP642787609), Tf));
cannam@167 253 Tw = VFMA(LDK(KP150383733), Tq, VMUL(LDK(KP984807753), Tp));
cannam@167 254 Tx = VADD(Tv, Tw);
cannam@167 255 Th = VFNMS(LDK(KP556670399), Tg, VMUL(LDK(KP766044443), Tf));
cannam@167 256 Tr = VFNMS(LDK(KP852868531), Tq, VMUL(LDK(KP173648177), Tp));
cannam@167 257 Ts = VADD(Th, Tr);
cannam@167 258 T7 = VFNMS(LDK(KP500000000), T6, T1);
cannam@167 259 TB = VFMA(LDK(KP852868531), Tg, VFMA(LDK(KP173648177), Tf, VFMA(LDK(KP296198132), Tq, VFNMS(LDK(KP939692620), Tp, T7))));
cannam@167 260 ST(&(x[WS(rs, 7)]), VSUB(TB, TC), ms, &(x[WS(rs, 1)]));
cannam@167 261 ST(&(x[WS(rs, 2)]), VADD(TB, TC), ms, &(x[0]));
cannam@167 262 {
cannam@167 263 V Tt, Ty, Tz, TA;
cannam@167 264 Tt = VADD(T7, Ts);
cannam@167 265 Ty = VBYI(VADD(Tu, Tx));
cannam@167 266 ST(&(x[WS(rs, 8)]), VSUB(Tt, Ty), ms, &(x[0]));
cannam@167 267 ST(&(x[WS(rs, 1)]), VADD(Tt, Ty), ms, &(x[WS(rs, 1)]));
cannam@167 268 Tz = VBYI(VADD(Tu, VFNMS(LDK(KP500000000), Tx, VMUL(LDK(KP866025403), VSUB(Th, Tr)))));
cannam@167 269 TA = VFMA(LDK(KP866025403), VSUB(Tw, Tv), VFNMS(LDK(KP500000000), Ts, T7));
cannam@167 270 ST(&(x[WS(rs, 4)]), VADD(Tz, TA), ms, &(x[0]));
cannam@167 271 ST(&(x[WS(rs, 5)]), VSUB(TA, Tz), ms, &(x[WS(rs, 1)]));
cannam@167 272 }
cannam@167 273 }
cannam@167 274 }
cannam@167 275 }
cannam@167 276 VLEAVE();
cannam@167 277 }
cannam@167 278
cannam@167 279 static const tw_instr twinstr[] = {
cannam@167 280 VTW(0, 1),
cannam@167 281 VTW(0, 2),
cannam@167 282 VTW(0, 3),
cannam@167 283 VTW(0, 4),
cannam@167 284 VTW(0, 5),
cannam@167 285 VTW(0, 6),
cannam@167 286 VTW(0, 7),
cannam@167 287 VTW(0, 8),
cannam@167 288 {TW_NEXT, VL, 0}
cannam@167 289 };
cannam@167 290
cannam@167 291 static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 };
cannam@167 292
cannam@167 293 void XSIMD(codelet_t1bv_9) (planner *p) {
cannam@167 294 X(kdft_dit_register) (p, t1bv_9, &desc);
cannam@167 295 }
cannam@167 296 #endif