annotate src/fftw-3.3.8/dft/simd/common/t1bv_15.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:59 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include dft/simd/t1b.h -sign 1 */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 92 FP additions, 77 FP multiplications,
cannam@167 32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add),
cannam@167 33 * 50 stack variables, 8 constants, and 30 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t1b.h"
cannam@167 36
cannam@167 37 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
cannam@167 40 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
cannam@167 41 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 42 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 43 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 44 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 45 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 47 {
cannam@167 48 INT m;
cannam@167 49 R *x;
cannam@167 50 x = ii;
cannam@167 51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
cannam@167 52 V TV, T7, T1f, TM, TP, Tf, Tn, To, T1j, T1k, T1l, TW, TX, TY, Tw;
cannam@167 53 V TE, TF, T1g, T1h, T1i;
cannam@167 54 {
cannam@167 55 V T1, T5, T3, T4, T2, T6;
cannam@167 56 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 57 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 58 T5 = BYTW(&(W[TWVL * 18]), T4);
cannam@167 59 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 60 T3 = BYTW(&(W[TWVL * 8]), T2);
cannam@167 61 TV = VSUB(T3, T5);
cannam@167 62 T6 = VADD(T3, T5);
cannam@167 63 T7 = VFNMS(LDK(KP500000000), T6, T1);
cannam@167 64 T1f = VADD(T1, T6);
cannam@167 65 }
cannam@167 66 {
cannam@167 67 V T9, Tq, Ty, Th, Te, TK, Tv, TN, TD, TO, Tm, TL;
cannam@167 68 {
cannam@167 69 V T8, Tp, Tx, Tg;
cannam@167 70 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 71 T9 = BYTW(&(W[TWVL * 4]), T8);
cannam@167 72 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 73 Tq = BYTW(&(W[TWVL * 10]), Tp);
cannam@167 74 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 75 Ty = BYTW(&(W[TWVL * 16]), Tx);
cannam@167 76 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 77 Th = BYTW(&(W[TWVL * 22]), Tg);
cannam@167 78 }
cannam@167 79 {
cannam@167 80 V Tb, Td, Ta, Tc;
cannam@167 81 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 82 Tb = BYTW(&(W[TWVL * 14]), Ta);
cannam@167 83 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 84 Td = BYTW(&(W[TWVL * 24]), Tc);
cannam@167 85 Te = VADD(Tb, Td);
cannam@167 86 TK = VSUB(Tb, Td);
cannam@167 87 }
cannam@167 88 {
cannam@167 89 V Ts, Tu, Tr, Tt;
cannam@167 90 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 91 Ts = BYTW(&(W[TWVL * 20]), Tr);
cannam@167 92 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 93 Tu = BYTW(&(W[0]), Tt);
cannam@167 94 Tv = VADD(Ts, Tu);
cannam@167 95 TN = VSUB(Ts, Tu);
cannam@167 96 }
cannam@167 97 {
cannam@167 98 V TA, TC, Tz, TB;
cannam@167 99 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 100 TA = BYTW(&(W[TWVL * 26]), Tz);
cannam@167 101 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 102 TC = BYTW(&(W[TWVL * 6]), TB);
cannam@167 103 TD = VADD(TA, TC);
cannam@167 104 TO = VSUB(TA, TC);
cannam@167 105 }
cannam@167 106 {
cannam@167 107 V Tj, Tl, Ti, Tk;
cannam@167 108 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 109 Tj = BYTW(&(W[TWVL * 2]), Ti);
cannam@167 110 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 111 Tl = BYTW(&(W[TWVL * 12]), Tk);
cannam@167 112 Tm = VADD(Tj, Tl);
cannam@167 113 TL = VSUB(Tj, Tl);
cannam@167 114 }
cannam@167 115 TM = VSUB(TK, TL);
cannam@167 116 TP = VSUB(TN, TO);
cannam@167 117 Tf = VFNMS(LDK(KP500000000), Te, T9);
cannam@167 118 Tn = VFNMS(LDK(KP500000000), Tm, Th);
cannam@167 119 To = VADD(Tf, Tn);
cannam@167 120 T1j = VADD(Tq, Tv);
cannam@167 121 T1k = VADD(Ty, TD);
cannam@167 122 T1l = VADD(T1j, T1k);
cannam@167 123 TW = VADD(TK, TL);
cannam@167 124 TX = VADD(TN, TO);
cannam@167 125 TY = VADD(TW, TX);
cannam@167 126 Tw = VFNMS(LDK(KP500000000), Tv, Tq);
cannam@167 127 TE = VFNMS(LDK(KP500000000), TD, Ty);
cannam@167 128 TF = VADD(Tw, TE);
cannam@167 129 T1g = VADD(T9, Te);
cannam@167 130 T1h = VADD(Th, Tm);
cannam@167 131 T1i = VADD(T1g, T1h);
cannam@167 132 }
cannam@167 133 {
cannam@167 134 V T1o, T1m, T1n, T1s, T1u, T1q, T1r, T1t, T1p;
cannam@167 135 T1o = VSUB(T1i, T1l);
cannam@167 136 T1m = VADD(T1i, T1l);
cannam@167 137 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
cannam@167 138 T1q = VSUB(T1j, T1k);
cannam@167 139 T1r = VSUB(T1g, T1h);
cannam@167 140 T1s = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1r, T1q));
cannam@167 141 T1u = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1q, T1r));
cannam@167 142 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
cannam@167 143 T1t = VFMA(LDK(KP559016994), T1o, T1n);
cannam@167 144 ST(&(x[WS(rs, 6)]), VFMAI(T1u, T1t), ms, &(x[0]));
cannam@167 145 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@167 146 T1p = VFNMS(LDK(KP559016994), T1o, T1n);
cannam@167 147 ST(&(x[WS(rs, 3)]), VFMAI(T1s, T1p), ms, &(x[WS(rs, 1)]));
cannam@167 148 ST(&(x[WS(rs, 12)]), VFNMSI(T1s, T1p), ms, &(x[0]));
cannam@167 149 }
cannam@167 150 {
cannam@167 151 V TQ, T16, T1e, T11, T19, TU, T18, TJ, T1d, T15, TZ, T10;
cannam@167 152 TQ = VFMA(LDK(KP618033988), TP, TM);
cannam@167 153 T16 = VFNMS(LDK(KP618033988), TM, TP);
cannam@167 154 T1e = VMUL(LDK(KP866025403), VADD(TV, TY));
cannam@167 155 TZ = VFNMS(LDK(KP250000000), TY, TV);
cannam@167 156 T10 = VSUB(TW, TX);
cannam@167 157 T11 = VFMA(LDK(KP559016994), T10, TZ);
cannam@167 158 T19 = VFNMS(LDK(KP559016994), T10, TZ);
cannam@167 159 {
cannam@167 160 V TS, TT, TI, TG, TH;
cannam@167 161 TS = VSUB(Tf, Tn);
cannam@167 162 TT = VSUB(Tw, TE);
cannam@167 163 TU = VFMA(LDK(KP618033988), TT, TS);
cannam@167 164 T18 = VFNMS(LDK(KP618033988), TS, TT);
cannam@167 165 TI = VSUB(To, TF);
cannam@167 166 TG = VADD(To, TF);
cannam@167 167 TH = VFNMS(LDK(KP250000000), TG, T7);
cannam@167 168 TJ = VFMA(LDK(KP559016994), TI, TH);
cannam@167 169 T1d = VADD(T7, TG);
cannam@167 170 T15 = VFNMS(LDK(KP559016994), TI, TH);
cannam@167 171 }
cannam@167 172 {
cannam@167 173 V TR, T12, T1b, T1c;
cannam@167 174 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, T1d), ms, &(x[WS(rs, 1)]));
cannam@167 175 ST(&(x[WS(rs, 10)]), VFMAI(T1e, T1d), ms, &(x[0]));
cannam@167 176 TR = VFNMS(LDK(KP823639103), TQ, TJ);
cannam@167 177 T12 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T11, TU));
cannam@167 178 ST(&(x[WS(rs, 1)]), VFMAI(T12, TR), ms, &(x[WS(rs, 1)]));
cannam@167 179 ST(&(x[WS(rs, 14)]), VFNMSI(T12, TR), ms, &(x[0]));
cannam@167 180 T1b = VFMA(LDK(KP823639103), T16, T15);
cannam@167 181 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T19, T18));
cannam@167 182 ST(&(x[WS(rs, 7)]), VFNMSI(T1c, T1b), ms, &(x[WS(rs, 1)]));
cannam@167 183 ST(&(x[WS(rs, 8)]), VFMAI(T1c, T1b), ms, &(x[0]));
cannam@167 184 {
cannam@167 185 V T17, T1a, T13, T14;
cannam@167 186 T17 = VFNMS(LDK(KP823639103), T16, T15);
cannam@167 187 T1a = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T19, T18));
cannam@167 188 ST(&(x[WS(rs, 2)]), VFNMSI(T1a, T17), ms, &(x[0]));
cannam@167 189 ST(&(x[WS(rs, 13)]), VFMAI(T1a, T17), ms, &(x[WS(rs, 1)]));
cannam@167 190 T13 = VFMA(LDK(KP823639103), TQ, TJ);
cannam@167 191 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T11, TU));
cannam@167 192 ST(&(x[WS(rs, 4)]), VFNMSI(T14, T13), ms, &(x[0]));
cannam@167 193 ST(&(x[WS(rs, 11)]), VFMAI(T14, T13), ms, &(x[WS(rs, 1)]));
cannam@167 194 }
cannam@167 195 }
cannam@167 196 }
cannam@167 197 }
cannam@167 198 }
cannam@167 199 VLEAVE();
cannam@167 200 }
cannam@167 201
cannam@167 202 static const tw_instr twinstr[] = {
cannam@167 203 VTW(0, 1),
cannam@167 204 VTW(0, 2),
cannam@167 205 VTW(0, 3),
cannam@167 206 VTW(0, 4),
cannam@167 207 VTW(0, 5),
cannam@167 208 VTW(0, 6),
cannam@167 209 VTW(0, 7),
cannam@167 210 VTW(0, 8),
cannam@167 211 VTW(0, 9),
cannam@167 212 VTW(0, 10),
cannam@167 213 VTW(0, 11),
cannam@167 214 VTW(0, 12),
cannam@167 215 VTW(0, 13),
cannam@167 216 VTW(0, 14),
cannam@167 217 {TW_NEXT, VL, 0}
cannam@167 218 };
cannam@167 219
cannam@167 220 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 };
cannam@167 221
cannam@167 222 void XSIMD(codelet_t1bv_15) (planner *p) {
cannam@167 223 X(kdft_dit_register) (p, t1bv_15, &desc);
cannam@167 224 }
cannam@167 225 #else
cannam@167 226
cannam@167 227 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include dft/simd/t1b.h -sign 1 */
cannam@167 228
cannam@167 229 /*
cannam@167 230 * This function contains 92 FP additions, 53 FP multiplications,
cannam@167 231 * (or, 78 additions, 39 multiplications, 14 fused multiply/add),
cannam@167 232 * 52 stack variables, 10 constants, and 30 memory accesses
cannam@167 233 */
cannam@167 234 #include "dft/simd/t1b.h"
cannam@167 235
cannam@167 236 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 237 {
cannam@167 238 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
cannam@167 239 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
cannam@167 240 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 241 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
cannam@167 242 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
cannam@167 243 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 244 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@167 245 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 246 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 247 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 248 {
cannam@167 249 INT m;
cannam@167 250 R *x;
cannam@167 251 x = ii;
cannam@167 252 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
cannam@167 253 V Ts, TV, T1f, TZ, T10, Tb, Tm, Tt, T1j, T1k, T1l, TI, TM, TR, Tz;
cannam@167 254 V TD, TQ, T1g, T1h, T1i;
cannam@167 255 {
cannam@167 256 V TT, Tr, Tp, Tq, To, TU;
cannam@167 257 TT = LD(&(x[0]), ms, &(x[0]));
cannam@167 258 Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 259 Tr = BYTW(&(W[TWVL * 18]), Tq);
cannam@167 260 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 261 Tp = BYTW(&(W[TWVL * 8]), To);
cannam@167 262 Ts = VSUB(Tp, Tr);
cannam@167 263 TU = VADD(Tp, Tr);
cannam@167 264 TV = VFNMS(LDK(KP500000000), TU, TT);
cannam@167 265 T1f = VADD(TT, TU);
cannam@167 266 }
cannam@167 267 {
cannam@167 268 V Tx, TG, TK, TB, T5, Ty, Tg, TH, Tl, TL, Ta, TC;
cannam@167 269 {
cannam@167 270 V Tw, TF, TJ, TA;
cannam@167 271 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 272 Tx = BYTW(&(W[TWVL * 4]), Tw);
cannam@167 273 TF = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 274 TG = BYTW(&(W[TWVL * 10]), TF);
cannam@167 275 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 276 TK = BYTW(&(W[TWVL * 16]), TJ);
cannam@167 277 TA = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 278 TB = BYTW(&(W[TWVL * 22]), TA);
cannam@167 279 }
cannam@167 280 {
cannam@167 281 V T2, T4, T1, T3;
cannam@167 282 T1 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 283 T2 = BYTW(&(W[TWVL * 14]), T1);
cannam@167 284 T3 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 285 T4 = BYTW(&(W[TWVL * 24]), T3);
cannam@167 286 T5 = VSUB(T2, T4);
cannam@167 287 Ty = VADD(T2, T4);
cannam@167 288 }
cannam@167 289 {
cannam@167 290 V Td, Tf, Tc, Te;
cannam@167 291 Tc = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 292 Td = BYTW(&(W[TWVL * 20]), Tc);
cannam@167 293 Te = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 294 Tf = BYTW(&(W[0]), Te);
cannam@167 295 Tg = VSUB(Td, Tf);
cannam@167 296 TH = VADD(Td, Tf);
cannam@167 297 }
cannam@167 298 {
cannam@167 299 V Ti, Tk, Th, Tj;
cannam@167 300 Th = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 301 Ti = BYTW(&(W[TWVL * 26]), Th);
cannam@167 302 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 303 Tk = BYTW(&(W[TWVL * 6]), Tj);
cannam@167 304 Tl = VSUB(Ti, Tk);
cannam@167 305 TL = VADD(Ti, Tk);
cannam@167 306 }
cannam@167 307 {
cannam@167 308 V T7, T9, T6, T8;
cannam@167 309 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 310 T7 = BYTW(&(W[TWVL * 2]), T6);
cannam@167 311 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 312 T9 = BYTW(&(W[TWVL * 12]), T8);
cannam@167 313 Ta = VSUB(T7, T9);
cannam@167 314 TC = VADD(T7, T9);
cannam@167 315 }
cannam@167 316 TZ = VSUB(T5, Ta);
cannam@167 317 T10 = VSUB(Tg, Tl);
cannam@167 318 Tb = VADD(T5, Ta);
cannam@167 319 Tm = VADD(Tg, Tl);
cannam@167 320 Tt = VADD(Tb, Tm);
cannam@167 321 T1j = VADD(TG, TH);
cannam@167 322 T1k = VADD(TK, TL);
cannam@167 323 T1l = VADD(T1j, T1k);
cannam@167 324 TI = VFNMS(LDK(KP500000000), TH, TG);
cannam@167 325 TM = VFNMS(LDK(KP500000000), TL, TK);
cannam@167 326 TR = VADD(TI, TM);
cannam@167 327 Tz = VFNMS(LDK(KP500000000), Ty, Tx);
cannam@167 328 TD = VFNMS(LDK(KP500000000), TC, TB);
cannam@167 329 TQ = VADD(Tz, TD);
cannam@167 330 T1g = VADD(Tx, Ty);
cannam@167 331 T1h = VADD(TB, TC);
cannam@167 332 T1i = VADD(T1g, T1h);
cannam@167 333 }
cannam@167 334 {
cannam@167 335 V T1o, T1m, T1n, T1s, T1t, T1q, T1r, T1u, T1p;
cannam@167 336 T1o = VMUL(LDK(KP559016994), VSUB(T1i, T1l));
cannam@167 337 T1m = VADD(T1i, T1l);
cannam@167 338 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
cannam@167 339 T1q = VSUB(T1g, T1h);
cannam@167 340 T1r = VSUB(T1j, T1k);
cannam@167 341 T1s = VBYI(VFNMS(LDK(KP951056516), T1r, VMUL(LDK(KP587785252), T1q)));
cannam@167 342 T1t = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1r)));
cannam@167 343 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
cannam@167 344 T1u = VADD(T1o, T1n);
cannam@167 345 ST(&(x[WS(rs, 6)]), VADD(T1t, T1u), ms, &(x[0]));
cannam@167 346 ST(&(x[WS(rs, 9)]), VSUB(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@167 347 T1p = VSUB(T1n, T1o);
cannam@167 348 ST(&(x[WS(rs, 3)]), VSUB(T1p, T1s), ms, &(x[WS(rs, 1)]));
cannam@167 349 ST(&(x[WS(rs, 12)]), VADD(T1s, T1p), ms, &(x[0]));
cannam@167 350 }
cannam@167 351 {
cannam@167 352 V T11, T18, T1e, TO, T16, Tv, T15, TY, T1d, T19, TE, TN;
cannam@167 353 T11 = VFMA(LDK(KP823639103), TZ, VMUL(LDK(KP509036960), T10));
cannam@167 354 T18 = VFNMS(LDK(KP823639103), T10, VMUL(LDK(KP509036960), TZ));
cannam@167 355 T1e = VBYI(VMUL(LDK(KP866025403), VADD(Ts, Tt)));
cannam@167 356 TE = VSUB(Tz, TD);
cannam@167 357 TN = VSUB(TI, TM);
cannam@167 358 TO = VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TN));
cannam@167 359 T16 = VFNMS(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TE));
cannam@167 360 {
cannam@167 361 V Tn, Tu, TS, TW, TX;
cannam@167 362 Tn = VMUL(LDK(KP484122918), VSUB(Tb, Tm));
cannam@167 363 Tu = VFNMS(LDK(KP216506350), Tt, VMUL(LDK(KP866025403), Ts));
cannam@167 364 Tv = VADD(Tn, Tu);
cannam@167 365 T15 = VSUB(Tn, Tu);
cannam@167 366 TS = VMUL(LDK(KP559016994), VSUB(TQ, TR));
cannam@167 367 TW = VADD(TQ, TR);
cannam@167 368 TX = VFNMS(LDK(KP250000000), TW, TV);
cannam@167 369 TY = VADD(TS, TX);
cannam@167 370 T1d = VADD(TV, TW);
cannam@167 371 T19 = VSUB(TX, TS);
cannam@167 372 }
cannam@167 373 {
cannam@167 374 V TP, T12, T1b, T1c;
cannam@167 375 ST(&(x[WS(rs, 5)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
cannam@167 376 ST(&(x[WS(rs, 10)]), VADD(T1e, T1d), ms, &(x[0]));
cannam@167 377 TP = VBYI(VADD(Tv, TO));
cannam@167 378 T12 = VSUB(TY, T11);
cannam@167 379 ST(&(x[WS(rs, 1)]), VADD(TP, T12), ms, &(x[WS(rs, 1)]));
cannam@167 380 ST(&(x[WS(rs, 14)]), VSUB(T12, TP), ms, &(x[0]));
cannam@167 381 T1b = VBYI(VSUB(T16, T15));
cannam@167 382 T1c = VSUB(T19, T18);
cannam@167 383 ST(&(x[WS(rs, 7)]), VADD(T1b, T1c), ms, &(x[WS(rs, 1)]));
cannam@167 384 ST(&(x[WS(rs, 8)]), VSUB(T1c, T1b), ms, &(x[0]));
cannam@167 385 {
cannam@167 386 V T17, T1a, T13, T14;
cannam@167 387 T17 = VBYI(VADD(T15, T16));
cannam@167 388 T1a = VADD(T18, T19);
cannam@167 389 ST(&(x[WS(rs, 2)]), VADD(T17, T1a), ms, &(x[0]));
cannam@167 390 ST(&(x[WS(rs, 13)]), VSUB(T1a, T17), ms, &(x[WS(rs, 1)]));
cannam@167 391 T13 = VBYI(VSUB(Tv, TO));
cannam@167 392 T14 = VADD(T11, TY);
cannam@167 393 ST(&(x[WS(rs, 4)]), VADD(T13, T14), ms, &(x[0]));
cannam@167 394 ST(&(x[WS(rs, 11)]), VSUB(T14, T13), ms, &(x[WS(rs, 1)]));
cannam@167 395 }
cannam@167 396 }
cannam@167 397 }
cannam@167 398 }
cannam@167 399 }
cannam@167 400 VLEAVE();
cannam@167 401 }
cannam@167 402
cannam@167 403 static const tw_instr twinstr[] = {
cannam@167 404 VTW(0, 1),
cannam@167 405 VTW(0, 2),
cannam@167 406 VTW(0, 3),
cannam@167 407 VTW(0, 4),
cannam@167 408 VTW(0, 5),
cannam@167 409 VTW(0, 6),
cannam@167 410 VTW(0, 7),
cannam@167 411 VTW(0, 8),
cannam@167 412 VTW(0, 9),
cannam@167 413 VTW(0, 10),
cannam@167 414 VTW(0, 11),
cannam@167 415 VTW(0, 12),
cannam@167 416 VTW(0, 13),
cannam@167 417 VTW(0, 14),
cannam@167 418 {TW_NEXT, VL, 0}
cannam@167 419 };
cannam@167 420
cannam@167 421 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 };
cannam@167 422
cannam@167 423 void XSIMD(codelet_t1bv_15) (planner *p) {
cannam@167 424 X(kdft_dit_register) (p, t1bv_15, &desc);
cannam@167 425 }
cannam@167 426 #endif