annotate src/fftw-3.3.8/dft/simd/common/t1bv_12.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:58 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include dft/simd/t1b.h -sign 1 */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 59 FP additions, 42 FP multiplications,
cannam@167 32 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
cannam@167 33 * 28 stack variables, 2 constants, and 24 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t1b.h"
cannam@167 36
cannam@167 37 static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 R *x;
cannam@167 44 x = ii;
cannam@167 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
cannam@167 46 V T1, TK, T6, TA, Tq, TI, Tv, TE, T9, TL, Te, TB, Ti, TH, Tn;
cannam@167 47 V TD;
cannam@167 48 {
cannam@167 49 V T5, T3, T4, T2;
cannam@167 50 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 51 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 52 T5 = BYTW(&(W[TWVL * 14]), T4);
cannam@167 53 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 54 T3 = BYTW(&(W[TWVL * 6]), T2);
cannam@167 55 TK = VSUB(T3, T5);
cannam@167 56 T6 = VADD(T3, T5);
cannam@167 57 TA = VFNMS(LDK(KP500000000), T6, T1);
cannam@167 58 }
cannam@167 59 {
cannam@167 60 V Tu, Ts, Tp, Tt, Tr;
cannam@167 61 Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 62 Tq = BYTW(&(W[TWVL * 16]), Tp);
cannam@167 63 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 64 Tu = BYTW(&(W[TWVL * 8]), Tt);
cannam@167 65 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 66 Ts = BYTW(&(W[0]), Tr);
cannam@167 67 TI = VSUB(Tu, Ts);
cannam@167 68 Tv = VADD(Ts, Tu);
cannam@167 69 TE = VFNMS(LDK(KP500000000), Tv, Tq);
cannam@167 70 }
cannam@167 71 {
cannam@167 72 V Td, Tb, T8, Tc, Ta;
cannam@167 73 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 74 T9 = BYTW(&(W[TWVL * 10]), T8);
cannam@167 75 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 76 Td = BYTW(&(W[TWVL * 2]), Tc);
cannam@167 77 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 78 Tb = BYTW(&(W[TWVL * 18]), Ta);
cannam@167 79 TL = VSUB(Tb, Td);
cannam@167 80 Te = VADD(Tb, Td);
cannam@167 81 TB = VFNMS(LDK(KP500000000), Te, T9);
cannam@167 82 }
cannam@167 83 {
cannam@167 84 V Tm, Tk, Th, Tl, Tj;
cannam@167 85 Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 86 Ti = BYTW(&(W[TWVL * 4]), Th);
cannam@167 87 Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 88 Tm = BYTW(&(W[TWVL * 20]), Tl);
cannam@167 89 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 90 Tk = BYTW(&(W[TWVL * 12]), Tj);
cannam@167 91 TH = VSUB(Tk, Tm);
cannam@167 92 Tn = VADD(Tk, Tm);
cannam@167 93 TD = VFNMS(LDK(KP500000000), Tn, Ti);
cannam@167 94 }
cannam@167 95 {
cannam@167 96 V Tg, Ty, Tx, Tz;
cannam@167 97 {
cannam@167 98 V T7, Tf, To, Tw;
cannam@167 99 T7 = VADD(T1, T6);
cannam@167 100 Tf = VADD(T9, Te);
cannam@167 101 Tg = VSUB(T7, Tf);
cannam@167 102 Ty = VADD(T7, Tf);
cannam@167 103 To = VADD(Ti, Tn);
cannam@167 104 Tw = VADD(Tq, Tv);
cannam@167 105 Tx = VSUB(To, Tw);
cannam@167 106 Tz = VADD(To, Tw);
cannam@167 107 }
cannam@167 108 ST(&(x[WS(rs, 3)]), VFNMSI(Tx, Tg), ms, &(x[WS(rs, 1)]));
cannam@167 109 ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
cannam@167 110 ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tg), ms, &(x[WS(rs, 1)]));
cannam@167 111 ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
cannam@167 112 }
cannam@167 113 {
cannam@167 114 V TS, TW, TV, TX;
cannam@167 115 {
cannam@167 116 V TQ, TR, TT, TU;
cannam@167 117 TQ = VSUB(TA, TB);
cannam@167 118 TR = VADD(TH, TI);
cannam@167 119 TS = VFNMS(LDK(KP866025403), TR, TQ);
cannam@167 120 TW = VFMA(LDK(KP866025403), TR, TQ);
cannam@167 121 TT = VSUB(TD, TE);
cannam@167 122 TU = VSUB(TK, TL);
cannam@167 123 TV = VFMA(LDK(KP866025403), TU, TT);
cannam@167 124 TX = VFNMS(LDK(KP866025403), TU, TT);
cannam@167 125 }
cannam@167 126 ST(&(x[WS(rs, 1)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
cannam@167 127 ST(&(x[WS(rs, 7)]), VFNMSI(TX, TW), ms, &(x[WS(rs, 1)]));
cannam@167 128 ST(&(x[WS(rs, 11)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
cannam@167 129 ST(&(x[WS(rs, 5)]), VFMAI(TX, TW), ms, &(x[WS(rs, 1)]));
cannam@167 130 }
cannam@167 131 {
cannam@167 132 V TG, TO, TN, TP;
cannam@167 133 {
cannam@167 134 V TC, TF, TJ, TM;
cannam@167 135 TC = VADD(TA, TB);
cannam@167 136 TF = VADD(TD, TE);
cannam@167 137 TG = VSUB(TC, TF);
cannam@167 138 TO = VADD(TC, TF);
cannam@167 139 TJ = VSUB(TH, TI);
cannam@167 140 TM = VADD(TK, TL);
cannam@167 141 TN = VMUL(LDK(KP866025403), VSUB(TJ, TM));
cannam@167 142 TP = VMUL(LDK(KP866025403), VADD(TM, TJ));
cannam@167 143 }
cannam@167 144 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TG), ms, &(x[0]));
cannam@167 145 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
cannam@167 146 ST(&(x[WS(rs, 2)]), VFMAI(TN, TG), ms, &(x[0]));
cannam@167 147 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
cannam@167 148 }
cannam@167 149 }
cannam@167 150 }
cannam@167 151 VLEAVE();
cannam@167 152 }
cannam@167 153
cannam@167 154 static const tw_instr twinstr[] = {
cannam@167 155 VTW(0, 1),
cannam@167 156 VTW(0, 2),
cannam@167 157 VTW(0, 3),
cannam@167 158 VTW(0, 4),
cannam@167 159 VTW(0, 5),
cannam@167 160 VTW(0, 6),
cannam@167 161 VTW(0, 7),
cannam@167 162 VTW(0, 8),
cannam@167 163 VTW(0, 9),
cannam@167 164 VTW(0, 10),
cannam@167 165 VTW(0, 11),
cannam@167 166 {TW_NEXT, VL, 0}
cannam@167 167 };
cannam@167 168
cannam@167 169 static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };
cannam@167 170
cannam@167 171 void XSIMD(codelet_t1bv_12) (planner *p) {
cannam@167 172 X(kdft_dit_register) (p, t1bv_12, &desc);
cannam@167 173 }
cannam@167 174 #else
cannam@167 175
cannam@167 176 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include dft/simd/t1b.h -sign 1 */
cannam@167 177
cannam@167 178 /*
cannam@167 179 * This function contains 59 FP additions, 30 FP multiplications,
cannam@167 180 * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
cannam@167 181 * 28 stack variables, 2 constants, and 24 memory accesses
cannam@167 182 */
cannam@167 183 #include "dft/simd/t1b.h"
cannam@167 184
cannam@167 185 static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 186 {
cannam@167 187 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 189 {
cannam@167 190 INT m;
cannam@167 191 R *x;
cannam@167 192 x = ii;
cannam@167 193 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
cannam@167 194 V T1, Tt, T6, T7, TB, Tq, TC, TD, T9, Tu, Te, Tf, Tx, Tl, Ty;
cannam@167 195 V Tz;
cannam@167 196 {
cannam@167 197 V T5, T3, T4, T2;
cannam@167 198 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 199 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 200 T5 = BYTW(&(W[TWVL * 14]), T4);
cannam@167 201 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 202 T3 = BYTW(&(W[TWVL * 6]), T2);
cannam@167 203 Tt = VSUB(T3, T5);
cannam@167 204 T6 = VADD(T3, T5);
cannam@167 205 T7 = VFNMS(LDK(KP500000000), T6, T1);
cannam@167 206 }
cannam@167 207 {
cannam@167 208 V Tn, Tp, Tm, TA, To;
cannam@167 209 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 210 Tn = BYTW(&(W[0]), Tm);
cannam@167 211 TA = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 212 TB = BYTW(&(W[TWVL * 16]), TA);
cannam@167 213 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 214 Tp = BYTW(&(W[TWVL * 8]), To);
cannam@167 215 Tq = VSUB(Tn, Tp);
cannam@167 216 TC = VADD(Tn, Tp);
cannam@167 217 TD = VFNMS(LDK(KP500000000), TC, TB);
cannam@167 218 }
cannam@167 219 {
cannam@167 220 V Td, Tb, T8, Tc, Ta;
cannam@167 221 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 222 T9 = BYTW(&(W[TWVL * 10]), T8);
cannam@167 223 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 224 Td = BYTW(&(W[TWVL * 2]), Tc);
cannam@167 225 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 226 Tb = BYTW(&(W[TWVL * 18]), Ta);
cannam@167 227 Tu = VSUB(Tb, Td);
cannam@167 228 Te = VADD(Tb, Td);
cannam@167 229 Tf = VFNMS(LDK(KP500000000), Te, T9);
cannam@167 230 }
cannam@167 231 {
cannam@167 232 V Ti, Tk, Th, Tw, Tj;
cannam@167 233 Th = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 234 Ti = BYTW(&(W[TWVL * 12]), Th);
cannam@167 235 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 236 Tx = BYTW(&(W[TWVL * 4]), Tw);
cannam@167 237 Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 238 Tk = BYTW(&(W[TWVL * 20]), Tj);
cannam@167 239 Tl = VSUB(Ti, Tk);
cannam@167 240 Ty = VADD(Ti, Tk);
cannam@167 241 Tz = VFNMS(LDK(KP500000000), Ty, Tx);
cannam@167 242 }
cannam@167 243 {
cannam@167 244 V Ts, TG, TF, TH;
cannam@167 245 {
cannam@167 246 V Tg, Tr, Tv, TE;
cannam@167 247 Tg = VSUB(T7, Tf);
cannam@167 248 Tr = VMUL(LDK(KP866025403), VSUB(Tl, Tq));
cannam@167 249 Ts = VSUB(Tg, Tr);
cannam@167 250 TG = VADD(Tg, Tr);
cannam@167 251 Tv = VMUL(LDK(KP866025403), VSUB(Tt, Tu));
cannam@167 252 TE = VSUB(Tz, TD);
cannam@167 253 TF = VBYI(VADD(Tv, TE));
cannam@167 254 TH = VBYI(VSUB(TE, Tv));
cannam@167 255 }
cannam@167 256 ST(&(x[WS(rs, 11)]), VSUB(Ts, TF), ms, &(x[WS(rs, 1)]));
cannam@167 257 ST(&(x[WS(rs, 5)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
cannam@167 258 ST(&(x[WS(rs, 1)]), VADD(Ts, TF), ms, &(x[WS(rs, 1)]));
cannam@167 259 ST(&(x[WS(rs, 7)]), VSUB(TG, TH), ms, &(x[WS(rs, 1)]));
cannam@167 260 }
cannam@167 261 {
cannam@167 262 V TS, TW, TV, TX;
cannam@167 263 {
cannam@167 264 V TQ, TR, TT, TU;
cannam@167 265 TQ = VADD(T1, T6);
cannam@167 266 TR = VADD(T9, Te);
cannam@167 267 TS = VSUB(TQ, TR);
cannam@167 268 TW = VADD(TQ, TR);
cannam@167 269 TT = VADD(Tx, Ty);
cannam@167 270 TU = VADD(TB, TC);
cannam@167 271 TV = VBYI(VSUB(TT, TU));
cannam@167 272 TX = VADD(TT, TU);
cannam@167 273 }
cannam@167 274 ST(&(x[WS(rs, 3)]), VSUB(TS, TV), ms, &(x[WS(rs, 1)]));
cannam@167 275 ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
cannam@167 276 ST(&(x[WS(rs, 9)]), VADD(TS, TV), ms, &(x[WS(rs, 1)]));
cannam@167 277 ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
cannam@167 278 }
cannam@167 279 {
cannam@167 280 V TK, TO, TN, TP;
cannam@167 281 {
cannam@167 282 V TI, TJ, TL, TM;
cannam@167 283 TI = VADD(Tl, Tq);
cannam@167 284 TJ = VADD(Tt, Tu);
cannam@167 285 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
cannam@167 286 TO = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
cannam@167 287 TL = VADD(T7, Tf);
cannam@167 288 TM = VADD(Tz, TD);
cannam@167 289 TN = VSUB(TL, TM);
cannam@167 290 TP = VADD(TL, TM);
cannam@167 291 }
cannam@167 292 ST(&(x[WS(rs, 2)]), VADD(TK, TN), ms, &(x[0]));
cannam@167 293 ST(&(x[WS(rs, 8)]), VSUB(TP, TO), ms, &(x[0]));
cannam@167 294 ST(&(x[WS(rs, 10)]), VSUB(TN, TK), ms, &(x[0]));
cannam@167 295 ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
cannam@167 296 }
cannam@167 297 }
cannam@167 298 }
cannam@167 299 VLEAVE();
cannam@167 300 }
cannam@167 301
cannam@167 302 static const tw_instr twinstr[] = {
cannam@167 303 VTW(0, 1),
cannam@167 304 VTW(0, 2),
cannam@167 305 VTW(0, 3),
cannam@167 306 VTW(0, 4),
cannam@167 307 VTW(0, 5),
cannam@167 308 VTW(0, 6),
cannam@167 309 VTW(0, 7),
cannam@167 310 VTW(0, 8),
cannam@167 311 VTW(0, 9),
cannam@167 312 VTW(0, 10),
cannam@167 313 VTW(0, 11),
cannam@167 314 {TW_NEXT, VL, 0}
cannam@167 315 };
cannam@167 316
cannam@167 317 static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };
cannam@167 318
cannam@167 319 void XSIMD(codelet_t1bv_12) (planner *p) {
cannam@167 320 X(kdft_dit_register) (p, t1bv_12, &desc);
cannam@167 321 }
cannam@167 322 #endif