cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
cannam@167
|
22 /* Generated on Thu May 24 08:06:13 EDT 2018 */
|
cannam@167
|
23
|
cannam@167
|
24 #include "dft/codelet-dft.h"
|
cannam@167
|
25
|
cannam@167
|
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
cannam@167
|
27
|
cannam@167
|
28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */
|
cannam@167
|
29
|
cannam@167
|
30 /*
|
cannam@167
|
31 * This function contains 44 FP additions, 32 FP multiplications,
|
cannam@167
|
32 * (or, 36 additions, 24 multiplications, 8 fused multiply/add),
|
cannam@167
|
33 * 22 stack variables, 0 constants, and 32 memory accesses
|
cannam@167
|
34 */
|
cannam@167
|
35 #include "dft/simd/q1f.h"
|
cannam@167
|
36
|
cannam@167
|
37 static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
cannam@167
|
38 {
|
cannam@167
|
39 {
|
cannam@167
|
40 INT m;
|
cannam@167
|
41 R *x;
|
cannam@167
|
42 x = ri;
|
cannam@167
|
43 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
|
cannam@167
|
44 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
|
cannam@167
|
45 V Tl;
|
cannam@167
|
46 {
|
cannam@167
|
47 V T1, T2, Ty, Tz;
|
cannam@167
|
48 T1 = LD(&(x[0]), ms, &(x[0]));
|
cannam@167
|
49 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
cannam@167
|
50 T3 = VSUB(T1, T2);
|
cannam@167
|
51 T9 = VADD(T1, T2);
|
cannam@167
|
52 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
cannam@167
|
53 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
cannam@167
|
54 TA = VSUB(Ty, Tz);
|
cannam@167
|
55 TG = VADD(Ty, Tz);
|
cannam@167
|
56 }
|
cannam@167
|
57 {
|
cannam@167
|
58 V TB, TC, T4, T5;
|
cannam@167
|
59 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
60 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
61 TD = VSUB(TB, TC);
|
cannam@167
|
62 TH = VADD(TB, TC);
|
cannam@167
|
63 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
64 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
65 T6 = VSUB(T4, T5);
|
cannam@167
|
66 Ta = VADD(T4, T5);
|
cannam@167
|
67 }
|
cannam@167
|
68 {
|
cannam@167
|
69 V Tc, Td, Tn, To;
|
cannam@167
|
70 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
cannam@167
|
71 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
cannam@167
|
72 Te = VSUB(Tc, Td);
|
cannam@167
|
73 Tk = VADD(Tc, Td);
|
cannam@167
|
74 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
cannam@167
|
75 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
cannam@167
|
76 Tp = VSUB(Tn, To);
|
cannam@167
|
77 Tv = VADD(Tn, To);
|
cannam@167
|
78 }
|
cannam@167
|
79 {
|
cannam@167
|
80 V Tq, Tr, Tf, Tg;
|
cannam@167
|
81 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
82 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
83 Ts = VSUB(Tq, Tr);
|
cannam@167
|
84 Tw = VADD(Tq, Tr);
|
cannam@167
|
85 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
86 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
87 Th = VSUB(Tf, Tg);
|
cannam@167
|
88 Tl = VADD(Tf, Tg);
|
cannam@167
|
89 }
|
cannam@167
|
90 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
|
cannam@167
|
91 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
92 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
|
cannam@167
|
93 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
94 {
|
cannam@167
|
95 V T7, Ti, Tt, TE;
|
cannam@167
|
96 T7 = BYTWJ(&(W[0]), VFNMSI(T6, T3));
|
cannam@167
|
97 ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
|
cannam@167
|
98 Ti = BYTWJ(&(W[0]), VFNMSI(Th, Te));
|
cannam@167
|
99 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
100 Tt = BYTWJ(&(W[0]), VFNMSI(Ts, Tp));
|
cannam@167
|
101 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
|
cannam@167
|
102 TE = BYTWJ(&(W[0]), VFNMSI(TD, TA));
|
cannam@167
|
103 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
104 }
|
cannam@167
|
105 {
|
cannam@167
|
106 V T8, Tj, Tu, TF;
|
cannam@167
|
107 T8 = BYTWJ(&(W[TWVL * 4]), VFMAI(T6, T3));
|
cannam@167
|
108 ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
|
cannam@167
|
109 Tj = BYTWJ(&(W[TWVL * 4]), VFMAI(Th, Te));
|
cannam@167
|
110 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
111 Tu = BYTWJ(&(W[TWVL * 4]), VFMAI(Ts, Tp));
|
cannam@167
|
112 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
|
cannam@167
|
113 TF = BYTWJ(&(W[TWVL * 4]), VFMAI(TD, TA));
|
cannam@167
|
114 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
115 }
|
cannam@167
|
116 {
|
cannam@167
|
117 V Tb, Tm, Tx, TI;
|
cannam@167
|
118 Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
|
cannam@167
|
119 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
|
cannam@167
|
120 Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
|
cannam@167
|
121 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
122 Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
|
cannam@167
|
123 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
|
cannam@167
|
124 TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
|
cannam@167
|
125 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
126 }
|
cannam@167
|
127 }
|
cannam@167
|
128 }
|
cannam@167
|
129 VLEAVE();
|
cannam@167
|
130 }
|
cannam@167
|
131
|
cannam@167
|
132 static const tw_instr twinstr[] = {
|
cannam@167
|
133 VTW(0, 1),
|
cannam@167
|
134 VTW(0, 2),
|
cannam@167
|
135 VTW(0, 3),
|
cannam@167
|
136 {TW_NEXT, VL, 0}
|
cannam@167
|
137 };
|
cannam@167
|
138
|
cannam@167
|
139 static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 };
|
cannam@167
|
140
|
cannam@167
|
141 void XSIMD(codelet_q1fv_4) (planner *p) {
|
cannam@167
|
142 X(kdft_difsq_register) (p, q1fv_4, &desc);
|
cannam@167
|
143 }
|
cannam@167
|
144 #else
|
cannam@167
|
145
|
cannam@167
|
146 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */
|
cannam@167
|
147
|
cannam@167
|
148 /*
|
cannam@167
|
149 * This function contains 44 FP additions, 24 FP multiplications,
|
cannam@167
|
150 * (or, 44 additions, 24 multiplications, 0 fused multiply/add),
|
cannam@167
|
151 * 22 stack variables, 0 constants, and 32 memory accesses
|
cannam@167
|
152 */
|
cannam@167
|
153 #include "dft/simd/q1f.h"
|
cannam@167
|
154
|
cannam@167
|
155 static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
cannam@167
|
156 {
|
cannam@167
|
157 {
|
cannam@167
|
158 INT m;
|
cannam@167
|
159 R *x;
|
cannam@167
|
160 x = ri;
|
cannam@167
|
161 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
|
cannam@167
|
162 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
|
cannam@167
|
163 V Tl;
|
cannam@167
|
164 {
|
cannam@167
|
165 V T1, T2, Ty, Tz;
|
cannam@167
|
166 T1 = LD(&(x[0]), ms, &(x[0]));
|
cannam@167
|
167 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
cannam@167
|
168 T3 = VSUB(T1, T2);
|
cannam@167
|
169 T9 = VADD(T1, T2);
|
cannam@167
|
170 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
cannam@167
|
171 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
cannam@167
|
172 TA = VSUB(Ty, Tz);
|
cannam@167
|
173 TG = VADD(Ty, Tz);
|
cannam@167
|
174 }
|
cannam@167
|
175 {
|
cannam@167
|
176 V TB, TC, T4, T5;
|
cannam@167
|
177 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
178 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
179 TD = VBYI(VSUB(TB, TC));
|
cannam@167
|
180 TH = VADD(TB, TC);
|
cannam@167
|
181 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
182 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
183 T6 = VBYI(VSUB(T4, T5));
|
cannam@167
|
184 Ta = VADD(T4, T5);
|
cannam@167
|
185 }
|
cannam@167
|
186 {
|
cannam@167
|
187 V Tc, Td, Tn, To;
|
cannam@167
|
188 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
cannam@167
|
189 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
cannam@167
|
190 Te = VSUB(Tc, Td);
|
cannam@167
|
191 Tk = VADD(Tc, Td);
|
cannam@167
|
192 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
cannam@167
|
193 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
cannam@167
|
194 Tp = VSUB(Tn, To);
|
cannam@167
|
195 Tv = VADD(Tn, To);
|
cannam@167
|
196 }
|
cannam@167
|
197 {
|
cannam@167
|
198 V Tq, Tr, Tf, Tg;
|
cannam@167
|
199 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
200 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
201 Ts = VBYI(VSUB(Tq, Tr));
|
cannam@167
|
202 Tw = VADD(Tq, Tr);
|
cannam@167
|
203 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
204 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
205 Th = VBYI(VSUB(Tf, Tg));
|
cannam@167
|
206 Tl = VADD(Tf, Tg);
|
cannam@167
|
207 }
|
cannam@167
|
208 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
|
cannam@167
|
209 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
210 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
|
cannam@167
|
211 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
212 {
|
cannam@167
|
213 V T7, Ti, Tt, TE;
|
cannam@167
|
214 T7 = BYTWJ(&(W[0]), VSUB(T3, T6));
|
cannam@167
|
215 ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
|
cannam@167
|
216 Ti = BYTWJ(&(W[0]), VSUB(Te, Th));
|
cannam@167
|
217 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
218 Tt = BYTWJ(&(W[0]), VSUB(Tp, Ts));
|
cannam@167
|
219 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
|
cannam@167
|
220 TE = BYTWJ(&(W[0]), VSUB(TA, TD));
|
cannam@167
|
221 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
cannam@167
|
222 }
|
cannam@167
|
223 {
|
cannam@167
|
224 V T8, Tj, Tu, TF;
|
cannam@167
|
225 T8 = BYTWJ(&(W[TWVL * 4]), VADD(T3, T6));
|
cannam@167
|
226 ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
|
cannam@167
|
227 Tj = BYTWJ(&(W[TWVL * 4]), VADD(Te, Th));
|
cannam@167
|
228 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
229 Tu = BYTWJ(&(W[TWVL * 4]), VADD(Tp, Ts));
|
cannam@167
|
230 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
|
cannam@167
|
231 TF = BYTWJ(&(W[TWVL * 4]), VADD(TA, TD));
|
cannam@167
|
232 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
cannam@167
|
233 }
|
cannam@167
|
234 {
|
cannam@167
|
235 V Tb, Tm, Tx, TI;
|
cannam@167
|
236 Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
|
cannam@167
|
237 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
|
cannam@167
|
238 Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
|
cannam@167
|
239 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
240 Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
|
cannam@167
|
241 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
|
cannam@167
|
242 TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
|
cannam@167
|
243 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
cannam@167
|
244 }
|
cannam@167
|
245 }
|
cannam@167
|
246 }
|
cannam@167
|
247 VLEAVE();
|
cannam@167
|
248 }
|
cannam@167
|
249
|
cannam@167
|
250 static const tw_instr twinstr[] = {
|
cannam@167
|
251 VTW(0, 1),
|
cannam@167
|
252 VTW(0, 2),
|
cannam@167
|
253 VTW(0, 3),
|
cannam@167
|
254 {TW_NEXT, VL, 0}
|
cannam@167
|
255 };
|
cannam@167
|
256
|
cannam@167
|
257 static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 };
|
cannam@167
|
258
|
cannam@167
|
259 void XSIMD(codelet_q1fv_4) (planner *p) {
|
cannam@167
|
260 X(kdft_difsq_register) (p, q1fv_4, &desc);
|
cannam@167
|
261 }
|
cannam@167
|
262 #endif
|