cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 /* threads.c: Portable thread spawning for loops, via the X(spawn_loop)
|
cannam@127
|
22 function. The first portion of this file is a set of macros to
|
cannam@127
|
23 spawn and join threads on various systems. */
|
cannam@127
|
24
|
cannam@127
|
25 #include "threads.h"
|
cannam@127
|
26 #include "api.h"
|
cannam@127
|
27
|
cannam@127
|
28 #if defined(USING_POSIX_THREADS)
|
cannam@127
|
29
|
cannam@127
|
30 #include <pthread.h>
|
cannam@127
|
31
|
cannam@127
|
32 #ifdef HAVE_UNISTD_H
|
cannam@127
|
33 # include <unistd.h>
|
cannam@127
|
34 #endif
|
cannam@127
|
35
|
cannam@127
|
36 /* imlementation of semaphores and mutexes: */
|
cannam@127
|
37 #if (defined(_POSIX_SEMAPHORES) && (_POSIX_SEMAPHORES >= 200112L))
|
cannam@127
|
38
|
cannam@127
|
39 /* If optional POSIX semaphores are supported, use them to
|
cannam@127
|
40 implement both semaphores and mutexes. */
|
cannam@127
|
41 # include <semaphore.h>
|
cannam@127
|
42 # include <errno.h>
|
cannam@127
|
43
|
cannam@127
|
44 typedef sem_t os_sem_t;
|
cannam@127
|
45
|
cannam@127
|
46 static void os_sem_init(os_sem_t *s) { sem_init(s, 0, 0); }
|
cannam@127
|
47 static void os_sem_destroy(os_sem_t *s) { sem_destroy(s); }
|
cannam@127
|
48
|
cannam@127
|
49 static void os_sem_down(os_sem_t *s)
|
cannam@127
|
50 {
|
cannam@127
|
51 int err;
|
cannam@127
|
52 do {
|
cannam@127
|
53 err = sem_wait(s);
|
cannam@127
|
54 } while (err == -1 && errno == EINTR);
|
cannam@127
|
55 CK(err == 0);
|
cannam@127
|
56 }
|
cannam@127
|
57
|
cannam@127
|
58 static void os_sem_up(os_sem_t *s) { sem_post(s); }
|
cannam@127
|
59
|
cannam@127
|
60 /*
|
cannam@127
|
61 The reason why we use sem_t to implement mutexes is that I have
|
cannam@127
|
62 seen mysterious hangs with glibc-2.7 and linux-2.6.22 when using
|
cannam@127
|
63 pthread_mutex_t, but no hangs with sem_t or with linux >=
|
cannam@127
|
64 2.6.24. For lack of better information, sem_t looks like the
|
cannam@127
|
65 safest choice.
|
cannam@127
|
66 */
|
cannam@127
|
67 typedef sem_t os_mutex_t;
|
cannam@127
|
68 static void os_mutex_init(os_mutex_t *s) { sem_init(s, 0, 1); }
|
cannam@127
|
69 #define os_mutex_destroy os_sem_destroy
|
cannam@127
|
70 #define os_mutex_lock os_sem_down
|
cannam@127
|
71 #define os_mutex_unlock os_sem_up
|
cannam@127
|
72
|
cannam@127
|
73 #else
|
cannam@127
|
74
|
cannam@127
|
75 /* If optional POSIX semaphores are not defined, use pthread
|
cannam@127
|
76 mutexes for mutexes, and simulate semaphores with condition
|
cannam@127
|
77 variables */
|
cannam@127
|
78 typedef pthread_mutex_t os_mutex_t;
|
cannam@127
|
79
|
cannam@127
|
80 static void os_mutex_init(os_mutex_t *s)
|
cannam@127
|
81 {
|
cannam@127
|
82 pthread_mutex_init(s, (pthread_mutexattr_t *)0);
|
cannam@127
|
83 }
|
cannam@127
|
84
|
cannam@127
|
85 static void os_mutex_destroy(os_mutex_t *s) { pthread_mutex_destroy(s); }
|
cannam@127
|
86 static void os_mutex_lock(os_mutex_t *s) { pthread_mutex_lock(s); }
|
cannam@127
|
87 static void os_mutex_unlock(os_mutex_t *s) { pthread_mutex_unlock(s); }
|
cannam@127
|
88
|
cannam@127
|
89 typedef struct {
|
cannam@127
|
90 pthread_mutex_t m;
|
cannam@127
|
91 pthread_cond_t c;
|
cannam@127
|
92 volatile int x;
|
cannam@127
|
93 } os_sem_t;
|
cannam@127
|
94
|
cannam@127
|
95 static void os_sem_init(os_sem_t *s)
|
cannam@127
|
96 {
|
cannam@127
|
97 pthread_mutex_init(&s->m, (pthread_mutexattr_t *)0);
|
cannam@127
|
98 pthread_cond_init(&s->c, (pthread_condattr_t *)0);
|
cannam@127
|
99
|
cannam@127
|
100 /* wrap initialization in lock to exploit the release
|
cannam@127
|
101 semantics of pthread_mutex_unlock() */
|
cannam@127
|
102 pthread_mutex_lock(&s->m);
|
cannam@127
|
103 s->x = 0;
|
cannam@127
|
104 pthread_mutex_unlock(&s->m);
|
cannam@127
|
105 }
|
cannam@127
|
106
|
cannam@127
|
107 static void os_sem_destroy(os_sem_t *s)
|
cannam@127
|
108 {
|
cannam@127
|
109 pthread_mutex_destroy(&s->m);
|
cannam@127
|
110 pthread_cond_destroy(&s->c);
|
cannam@127
|
111 }
|
cannam@127
|
112
|
cannam@127
|
113 static void os_sem_down(os_sem_t *s)
|
cannam@127
|
114 {
|
cannam@127
|
115 pthread_mutex_lock(&s->m);
|
cannam@127
|
116 while (s->x <= 0)
|
cannam@127
|
117 pthread_cond_wait(&s->c, &s->m);
|
cannam@127
|
118 --s->x;
|
cannam@127
|
119 pthread_mutex_unlock(&s->m);
|
cannam@127
|
120 }
|
cannam@127
|
121
|
cannam@127
|
122 static void os_sem_up(os_sem_t *s)
|
cannam@127
|
123 {
|
cannam@127
|
124 pthread_mutex_lock(&s->m);
|
cannam@127
|
125 ++s->x;
|
cannam@127
|
126 pthread_cond_signal(&s->c);
|
cannam@127
|
127 pthread_mutex_unlock(&s->m);
|
cannam@127
|
128 }
|
cannam@127
|
129
|
cannam@127
|
130 #endif
|
cannam@127
|
131
|
cannam@127
|
132 #define FFTW_WORKER void *
|
cannam@127
|
133
|
cannam@127
|
134 static void os_create_thread(FFTW_WORKER (*worker)(void *arg),
|
cannam@127
|
135 void *arg)
|
cannam@127
|
136 {
|
cannam@127
|
137 pthread_attr_t attr;
|
cannam@127
|
138 pthread_t tid;
|
cannam@127
|
139
|
cannam@127
|
140 pthread_attr_init(&attr);
|
cannam@127
|
141 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
|
cannam@127
|
142 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
|
cannam@127
|
143
|
cannam@127
|
144 pthread_create(&tid, &attr, worker, (void *)arg);
|
cannam@127
|
145 pthread_attr_destroy(&attr);
|
cannam@127
|
146 }
|
cannam@127
|
147
|
cannam@127
|
148 static void os_destroy_thread(void)
|
cannam@127
|
149 {
|
cannam@127
|
150 pthread_exit((void *)0);
|
cannam@127
|
151 }
|
cannam@127
|
152
|
cannam@127
|
153 /* support for static mutexes */
|
cannam@127
|
154 typedef pthread_mutex_t os_static_mutex_t;
|
cannam@127
|
155 #define OS_STATIC_MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER
|
cannam@127
|
156 static void os_static_mutex_lock(os_static_mutex_t *s) { pthread_mutex_lock(s); }
|
cannam@127
|
157 static void os_static_mutex_unlock(os_static_mutex_t *s) { pthread_mutex_unlock(s); }
|
cannam@127
|
158
|
cannam@127
|
159 #elif defined(__WIN32__) || defined(_WIN32) || defined(_WINDOWS)
|
cannam@127
|
160 /* hack: windef.h defines INT for its own purposes and this causes
|
cannam@127
|
161 a conflict with our own INT in ifftw.h. Divert the windows
|
cannam@127
|
162 definition into another name unlikely to cause a conflict */
|
cannam@127
|
163 #define INT magnus_ab_INTegro_seclorum_nascitur_ordo
|
cannam@127
|
164 #include <windows.h>
|
cannam@127
|
165 #include <process.h>
|
cannam@127
|
166 #undef INT
|
cannam@127
|
167
|
cannam@127
|
168 typedef HANDLE os_mutex_t;
|
cannam@127
|
169
|
cannam@127
|
170 static void os_mutex_init(os_mutex_t *s)
|
cannam@127
|
171 {
|
cannam@127
|
172 *s = CreateMutex(NULL, FALSE, NULL);
|
cannam@127
|
173 }
|
cannam@127
|
174
|
cannam@127
|
175 static void os_mutex_destroy(os_mutex_t *s)
|
cannam@127
|
176 {
|
cannam@127
|
177 CloseHandle(*s);
|
cannam@127
|
178 }
|
cannam@127
|
179
|
cannam@127
|
180 static void os_mutex_lock(os_mutex_t *s)
|
cannam@127
|
181 {
|
cannam@127
|
182 WaitForSingleObject(*s, INFINITE);
|
cannam@127
|
183 }
|
cannam@127
|
184
|
cannam@127
|
185 static void os_mutex_unlock(os_mutex_t *s)
|
cannam@127
|
186 {
|
cannam@127
|
187 ReleaseMutex(*s);
|
cannam@127
|
188 }
|
cannam@127
|
189
|
cannam@127
|
190 typedef HANDLE os_sem_t;
|
cannam@127
|
191
|
cannam@127
|
192 static void os_sem_init(os_sem_t *s)
|
cannam@127
|
193 {
|
cannam@127
|
194 *s = CreateSemaphore(NULL, 0, 0x7FFFFFFFL, NULL);
|
cannam@127
|
195 }
|
cannam@127
|
196
|
cannam@127
|
197 static void os_sem_destroy(os_sem_t *s)
|
cannam@127
|
198 {
|
cannam@127
|
199 CloseHandle(*s);
|
cannam@127
|
200 }
|
cannam@127
|
201
|
cannam@127
|
202 static void os_sem_down(os_sem_t *s)
|
cannam@127
|
203 {
|
cannam@127
|
204 WaitForSingleObject(*s, INFINITE);
|
cannam@127
|
205 }
|
cannam@127
|
206
|
cannam@127
|
207 static void os_sem_up(os_sem_t *s)
|
cannam@127
|
208 {
|
cannam@127
|
209 ReleaseSemaphore(*s, 1, NULL);
|
cannam@127
|
210 }
|
cannam@127
|
211
|
cannam@127
|
212 #define FFTW_WORKER unsigned __stdcall
|
cannam@127
|
213 typedef unsigned (__stdcall *winthread_start) (void *);
|
cannam@127
|
214
|
cannam@127
|
215 static void os_create_thread(winthread_start worker,
|
cannam@127
|
216 void *arg)
|
cannam@127
|
217 {
|
cannam@127
|
218 _beginthreadex((void *)NULL, /* security attrib */
|
cannam@127
|
219 0, /* stack size */
|
cannam@127
|
220 worker, /* start address */
|
cannam@127
|
221 arg, /* parameters */
|
cannam@127
|
222 0, /* creation flags */
|
cannam@127
|
223 (unsigned *)NULL); /* tid */
|
cannam@127
|
224 }
|
cannam@127
|
225
|
cannam@127
|
226 static void os_destroy_thread(void)
|
cannam@127
|
227 {
|
cannam@127
|
228 _endthreadex(0);
|
cannam@127
|
229 }
|
cannam@127
|
230
|
cannam@127
|
231 /* windows does not have statically-initialized mutexes---fake a
|
cannam@127
|
232 spinlock */
|
cannam@127
|
233 typedef volatile LONG os_static_mutex_t;
|
cannam@127
|
234 #define OS_STATIC_MUTEX_INITIALIZER 0
|
cannam@127
|
235 static void os_static_mutex_lock(os_static_mutex_t *s)
|
cannam@127
|
236 {
|
cannam@127
|
237 while (InterlockedExchange(s, 1) == 1) {
|
cannam@127
|
238 YieldProcessor();
|
cannam@127
|
239 Sleep(0);
|
cannam@127
|
240 }
|
cannam@127
|
241 }
|
cannam@127
|
242 static void os_static_mutex_unlock(os_static_mutex_t *s)
|
cannam@127
|
243 {
|
cannam@127
|
244 LONG old = InterlockedExchange(s, 0);
|
cannam@127
|
245 A(old == 1);
|
cannam@127
|
246 }
|
cannam@127
|
247 #else
|
cannam@127
|
248 #error "No threading layer defined"
|
cannam@127
|
249 #endif
|
cannam@127
|
250
|
cannam@127
|
251 /************************************************************************/
|
cannam@127
|
252
|
cannam@127
|
253 /* Main code: */
|
cannam@127
|
254 struct worker {
|
cannam@127
|
255 os_sem_t ready;
|
cannam@127
|
256 os_sem_t done;
|
cannam@127
|
257 struct work *w;
|
cannam@127
|
258 struct worker *cdr;
|
cannam@127
|
259 };
|
cannam@127
|
260
|
cannam@127
|
261 static struct worker *make_worker(void)
|
cannam@127
|
262 {
|
cannam@127
|
263 struct worker *q = (struct worker *)MALLOC(sizeof(*q), OTHER);
|
cannam@127
|
264 os_sem_init(&q->ready);
|
cannam@127
|
265 os_sem_init(&q->done);
|
cannam@127
|
266 return q;
|
cannam@127
|
267 }
|
cannam@127
|
268
|
cannam@127
|
269 static void unmake_worker(struct worker *q)
|
cannam@127
|
270 {
|
cannam@127
|
271 os_sem_destroy(&q->done);
|
cannam@127
|
272 os_sem_destroy(&q->ready);
|
cannam@127
|
273 X(ifree)(q);
|
cannam@127
|
274 }
|
cannam@127
|
275
|
cannam@127
|
276 struct work {
|
cannam@127
|
277 spawn_function proc;
|
cannam@127
|
278 spawn_data d;
|
cannam@127
|
279 struct worker *q; /* the worker responsible for performing this work */
|
cannam@127
|
280 };
|
cannam@127
|
281
|
cannam@127
|
282 static os_mutex_t queue_lock;
|
cannam@127
|
283 static os_sem_t termination_semaphore;
|
cannam@127
|
284
|
cannam@127
|
285 static struct worker *worker_queue;
|
cannam@127
|
286 #define WITH_QUEUE_LOCK(what) \
|
cannam@127
|
287 { \
|
cannam@127
|
288 os_mutex_lock(&queue_lock); \
|
cannam@127
|
289 what; \
|
cannam@127
|
290 os_mutex_unlock(&queue_lock); \
|
cannam@127
|
291 }
|
cannam@127
|
292
|
cannam@127
|
293 static FFTW_WORKER worker(void *arg)
|
cannam@127
|
294 {
|
cannam@127
|
295 struct worker *ego = (struct worker *)arg;
|
cannam@127
|
296 struct work *w;
|
cannam@127
|
297
|
cannam@127
|
298 for (;;) {
|
cannam@127
|
299 /* wait until work becomes available */
|
cannam@127
|
300 os_sem_down(&ego->ready);
|
cannam@127
|
301
|
cannam@127
|
302 w = ego->w;
|
cannam@127
|
303
|
cannam@127
|
304 /* !w->proc ==> terminate worker */
|
cannam@127
|
305 if (!w->proc) break;
|
cannam@127
|
306
|
cannam@127
|
307 /* do the work */
|
cannam@127
|
308 w->proc(&w->d);
|
cannam@127
|
309
|
cannam@127
|
310 /* signal that work is done */
|
cannam@127
|
311 os_sem_up(&ego->done);
|
cannam@127
|
312 }
|
cannam@127
|
313
|
cannam@127
|
314 /* termination protocol */
|
cannam@127
|
315 os_sem_up(&termination_semaphore);
|
cannam@127
|
316
|
cannam@127
|
317 os_destroy_thread();
|
cannam@127
|
318 /* UNREACHABLE */
|
cannam@127
|
319 return 0;
|
cannam@127
|
320 }
|
cannam@127
|
321
|
cannam@127
|
322 static void enqueue(struct worker *q)
|
cannam@127
|
323 {
|
cannam@127
|
324 WITH_QUEUE_LOCK({
|
cannam@127
|
325 q->cdr = worker_queue;
|
cannam@127
|
326 worker_queue = q;
|
cannam@127
|
327 });
|
cannam@127
|
328 }
|
cannam@127
|
329
|
cannam@127
|
330 static struct worker *dequeue(void)
|
cannam@127
|
331 {
|
cannam@127
|
332 struct worker *q;
|
cannam@127
|
333
|
cannam@127
|
334 WITH_QUEUE_LOCK({
|
cannam@127
|
335 q = worker_queue;
|
cannam@127
|
336 if (q)
|
cannam@127
|
337 worker_queue = q->cdr;
|
cannam@127
|
338 });
|
cannam@127
|
339
|
cannam@127
|
340 if (!q) {
|
cannam@127
|
341 /* no worker is available. Create one */
|
cannam@127
|
342 q = make_worker();
|
cannam@127
|
343 os_create_thread(worker, q);
|
cannam@127
|
344 }
|
cannam@127
|
345
|
cannam@127
|
346 return q;
|
cannam@127
|
347 }
|
cannam@127
|
348
|
cannam@127
|
349
|
cannam@127
|
350 static void kill_workforce(void)
|
cannam@127
|
351 {
|
cannam@127
|
352 struct work w;
|
cannam@127
|
353
|
cannam@127
|
354 w.proc = 0;
|
cannam@127
|
355
|
cannam@127
|
356 THREAD_ON; /* needed for debugging mode: since make_worker
|
cannam@127
|
357 is called from dequeue which is only called in
|
cannam@127
|
358 thread_on mode, we need to unmake_worker in thread_on. */
|
cannam@127
|
359 WITH_QUEUE_LOCK({
|
cannam@127
|
360 /* tell all workers that they must terminate.
|
cannam@127
|
361
|
cannam@127
|
362 Because workers enqueue themselves before signaling the
|
cannam@127
|
363 completion of the work, all workers belong to the worker queue
|
cannam@127
|
364 if we get here. Also, all workers are waiting at
|
cannam@127
|
365 os_sem_down(ready), so we can hold the queue lock without
|
cannam@127
|
366 deadlocking */
|
cannam@127
|
367 while (worker_queue) {
|
cannam@127
|
368 struct worker *q = worker_queue;
|
cannam@127
|
369 worker_queue = q->cdr;
|
cannam@127
|
370 q->w = &w;
|
cannam@127
|
371 os_sem_up(&q->ready);
|
cannam@127
|
372 os_sem_down(&termination_semaphore);
|
cannam@127
|
373 unmake_worker(q);
|
cannam@127
|
374 }
|
cannam@127
|
375 });
|
cannam@127
|
376 THREAD_OFF;
|
cannam@127
|
377 }
|
cannam@127
|
378
|
cannam@127
|
379 static os_static_mutex_t initialization_mutex = OS_STATIC_MUTEX_INITIALIZER;
|
cannam@127
|
380
|
cannam@127
|
381 int X(ithreads_init)(void)
|
cannam@127
|
382 {
|
cannam@127
|
383 os_static_mutex_lock(&initialization_mutex); {
|
cannam@127
|
384 os_mutex_init(&queue_lock);
|
cannam@127
|
385 os_sem_init(&termination_semaphore);
|
cannam@127
|
386
|
cannam@127
|
387 WITH_QUEUE_LOCK({
|
cannam@127
|
388 worker_queue = 0;
|
cannam@127
|
389 });
|
cannam@127
|
390 } os_static_mutex_unlock(&initialization_mutex);
|
cannam@127
|
391
|
cannam@127
|
392 return 0; /* no error */
|
cannam@127
|
393 }
|
cannam@127
|
394
|
cannam@127
|
395 /* Distribute a loop from 0 to loopmax-1 over nthreads threads.
|
cannam@127
|
396 proc(d) is called to execute a block of iterations from d->min
|
cannam@127
|
397 to d->max-1. d->thr_num indicate the number of the thread
|
cannam@127
|
398 that is executing proc (from 0 to nthreads-1), and d->data is
|
cannam@127
|
399 the same as the data parameter passed to X(spawn_loop).
|
cannam@127
|
400
|
cannam@127
|
401 This function returns only after all the threads have completed. */
|
cannam@127
|
402 void X(spawn_loop)(int loopmax, int nthr, spawn_function proc, void *data)
|
cannam@127
|
403 {
|
cannam@127
|
404 int block_size;
|
cannam@127
|
405 struct work *r;
|
cannam@127
|
406 int i;
|
cannam@127
|
407
|
cannam@127
|
408 A(loopmax >= 0);
|
cannam@127
|
409 A(nthr > 0);
|
cannam@127
|
410 A(proc);
|
cannam@127
|
411
|
cannam@127
|
412 if (!loopmax) return;
|
cannam@127
|
413
|
cannam@127
|
414 /* Choose the block size and number of threads in order to (1)
|
cannam@127
|
415 minimize the critical path and (2) use the fewest threads that
|
cannam@127
|
416 achieve the same critical path (to minimize overhead).
|
cannam@127
|
417 e.g. if loopmax is 5 and nthr is 4, we should use only 3
|
cannam@127
|
418 threads with block sizes of 2, 2, and 1. */
|
cannam@127
|
419 block_size = (loopmax + nthr - 1) / nthr;
|
cannam@127
|
420 nthr = (loopmax + block_size - 1) / block_size;
|
cannam@127
|
421
|
cannam@127
|
422 THREAD_ON; /* prevent debugging mode from failing under threads */
|
cannam@127
|
423 STACK_MALLOC(struct work *, r, sizeof(struct work) * nthr);
|
cannam@127
|
424
|
cannam@127
|
425 /* distribute work: */
|
cannam@127
|
426 for (i = 0; i < nthr; ++i) {
|
cannam@127
|
427 struct work *w = &r[i];
|
cannam@127
|
428 spawn_data *d = &w->d;
|
cannam@127
|
429
|
cannam@127
|
430 d->max = (d->min = i * block_size) + block_size;
|
cannam@127
|
431 if (d->max > loopmax)
|
cannam@127
|
432 d->max = loopmax;
|
cannam@127
|
433 d->thr_num = i;
|
cannam@127
|
434 d->data = data;
|
cannam@127
|
435 w->proc = proc;
|
cannam@127
|
436
|
cannam@127
|
437 if (i == nthr - 1) {
|
cannam@127
|
438 /* do the work ourselves */
|
cannam@127
|
439 proc(d);
|
cannam@127
|
440 } else {
|
cannam@127
|
441 /* assign a worker to W */
|
cannam@127
|
442 w->q = dequeue();
|
cannam@127
|
443
|
cannam@127
|
444 /* tell worker w->q to do it */
|
cannam@127
|
445 w->q->w = w; /* Dirac could have written this */
|
cannam@127
|
446 os_sem_up(&w->q->ready);
|
cannam@127
|
447 }
|
cannam@127
|
448 }
|
cannam@127
|
449
|
cannam@127
|
450 for (i = 0; i < nthr - 1; ++i) {
|
cannam@127
|
451 struct work *w = &r[i];
|
cannam@127
|
452 os_sem_down(&w->q->done);
|
cannam@127
|
453 enqueue(w->q);
|
cannam@127
|
454 }
|
cannam@127
|
455
|
cannam@127
|
456 STACK_FREE(r);
|
cannam@127
|
457 THREAD_OFF; /* prevent debugging mode from failing under threads */
|
cannam@127
|
458 }
|
cannam@127
|
459
|
cannam@127
|
460 void X(threads_cleanup)(void)
|
cannam@127
|
461 {
|
cannam@127
|
462 kill_workforce();
|
cannam@127
|
463 os_mutex_destroy(&queue_lock);
|
cannam@127
|
464 os_sem_destroy(&termination_semaphore);
|
cannam@127
|
465 }
|
cannam@127
|
466
|
cannam@127
|
467 static os_static_mutex_t install_planner_hooks_mutex = OS_STATIC_MUTEX_INITIALIZER;
|
cannam@127
|
468 static os_mutex_t planner_mutex;
|
cannam@127
|
469 static int planner_hooks_installed = 0;
|
cannam@127
|
470
|
cannam@127
|
471 static void lock_planner_mutex(void)
|
cannam@127
|
472 {
|
cannam@127
|
473 os_mutex_lock(&planner_mutex);
|
cannam@127
|
474 }
|
cannam@127
|
475
|
cannam@127
|
476 static void unlock_planner_mutex(void)
|
cannam@127
|
477 {
|
cannam@127
|
478 os_mutex_unlock(&planner_mutex);
|
cannam@127
|
479 }
|
cannam@127
|
480
|
cannam@127
|
481 void X(threads_register_planner_hooks)(void)
|
cannam@127
|
482 {
|
cannam@127
|
483 os_static_mutex_lock(&install_planner_hooks_mutex); {
|
cannam@127
|
484 if (!planner_hooks_installed) {
|
cannam@127
|
485 os_mutex_init(&planner_mutex);
|
cannam@127
|
486 X(set_planner_hooks)(lock_planner_mutex, unlock_planner_mutex);
|
cannam@127
|
487 planner_hooks_installed = 1;
|
cannam@127
|
488 }
|
cannam@127
|
489 } os_static_mutex_unlock(&install_planner_hooks_mutex);
|
cannam@127
|
490 }
|