annotate src/fftw-3.3.5/threads/threads.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* threads.c: Portable thread spawning for loops, via the X(spawn_loop)
cannam@127 22 function. The first portion of this file is a set of macros to
cannam@127 23 spawn and join threads on various systems. */
cannam@127 24
cannam@127 25 #include "threads.h"
cannam@127 26 #include "api.h"
cannam@127 27
cannam@127 28 #if defined(USING_POSIX_THREADS)
cannam@127 29
cannam@127 30 #include <pthread.h>
cannam@127 31
cannam@127 32 #ifdef HAVE_UNISTD_H
cannam@127 33 # include <unistd.h>
cannam@127 34 #endif
cannam@127 35
cannam@127 36 /* imlementation of semaphores and mutexes: */
cannam@127 37 #if (defined(_POSIX_SEMAPHORES) && (_POSIX_SEMAPHORES >= 200112L))
cannam@127 38
cannam@127 39 /* If optional POSIX semaphores are supported, use them to
cannam@127 40 implement both semaphores and mutexes. */
cannam@127 41 # include <semaphore.h>
cannam@127 42 # include <errno.h>
cannam@127 43
cannam@127 44 typedef sem_t os_sem_t;
cannam@127 45
cannam@127 46 static void os_sem_init(os_sem_t *s) { sem_init(s, 0, 0); }
cannam@127 47 static void os_sem_destroy(os_sem_t *s) { sem_destroy(s); }
cannam@127 48
cannam@127 49 static void os_sem_down(os_sem_t *s)
cannam@127 50 {
cannam@127 51 int err;
cannam@127 52 do {
cannam@127 53 err = sem_wait(s);
cannam@127 54 } while (err == -1 && errno == EINTR);
cannam@127 55 CK(err == 0);
cannam@127 56 }
cannam@127 57
cannam@127 58 static void os_sem_up(os_sem_t *s) { sem_post(s); }
cannam@127 59
cannam@127 60 /*
cannam@127 61 The reason why we use sem_t to implement mutexes is that I have
cannam@127 62 seen mysterious hangs with glibc-2.7 and linux-2.6.22 when using
cannam@127 63 pthread_mutex_t, but no hangs with sem_t or with linux >=
cannam@127 64 2.6.24. For lack of better information, sem_t looks like the
cannam@127 65 safest choice.
cannam@127 66 */
cannam@127 67 typedef sem_t os_mutex_t;
cannam@127 68 static void os_mutex_init(os_mutex_t *s) { sem_init(s, 0, 1); }
cannam@127 69 #define os_mutex_destroy os_sem_destroy
cannam@127 70 #define os_mutex_lock os_sem_down
cannam@127 71 #define os_mutex_unlock os_sem_up
cannam@127 72
cannam@127 73 #else
cannam@127 74
cannam@127 75 /* If optional POSIX semaphores are not defined, use pthread
cannam@127 76 mutexes for mutexes, and simulate semaphores with condition
cannam@127 77 variables */
cannam@127 78 typedef pthread_mutex_t os_mutex_t;
cannam@127 79
cannam@127 80 static void os_mutex_init(os_mutex_t *s)
cannam@127 81 {
cannam@127 82 pthread_mutex_init(s, (pthread_mutexattr_t *)0);
cannam@127 83 }
cannam@127 84
cannam@127 85 static void os_mutex_destroy(os_mutex_t *s) { pthread_mutex_destroy(s); }
cannam@127 86 static void os_mutex_lock(os_mutex_t *s) { pthread_mutex_lock(s); }
cannam@127 87 static void os_mutex_unlock(os_mutex_t *s) { pthread_mutex_unlock(s); }
cannam@127 88
cannam@127 89 typedef struct {
cannam@127 90 pthread_mutex_t m;
cannam@127 91 pthread_cond_t c;
cannam@127 92 volatile int x;
cannam@127 93 } os_sem_t;
cannam@127 94
cannam@127 95 static void os_sem_init(os_sem_t *s)
cannam@127 96 {
cannam@127 97 pthread_mutex_init(&s->m, (pthread_mutexattr_t *)0);
cannam@127 98 pthread_cond_init(&s->c, (pthread_condattr_t *)0);
cannam@127 99
cannam@127 100 /* wrap initialization in lock to exploit the release
cannam@127 101 semantics of pthread_mutex_unlock() */
cannam@127 102 pthread_mutex_lock(&s->m);
cannam@127 103 s->x = 0;
cannam@127 104 pthread_mutex_unlock(&s->m);
cannam@127 105 }
cannam@127 106
cannam@127 107 static void os_sem_destroy(os_sem_t *s)
cannam@127 108 {
cannam@127 109 pthread_mutex_destroy(&s->m);
cannam@127 110 pthread_cond_destroy(&s->c);
cannam@127 111 }
cannam@127 112
cannam@127 113 static void os_sem_down(os_sem_t *s)
cannam@127 114 {
cannam@127 115 pthread_mutex_lock(&s->m);
cannam@127 116 while (s->x <= 0)
cannam@127 117 pthread_cond_wait(&s->c, &s->m);
cannam@127 118 --s->x;
cannam@127 119 pthread_mutex_unlock(&s->m);
cannam@127 120 }
cannam@127 121
cannam@127 122 static void os_sem_up(os_sem_t *s)
cannam@127 123 {
cannam@127 124 pthread_mutex_lock(&s->m);
cannam@127 125 ++s->x;
cannam@127 126 pthread_cond_signal(&s->c);
cannam@127 127 pthread_mutex_unlock(&s->m);
cannam@127 128 }
cannam@127 129
cannam@127 130 #endif
cannam@127 131
cannam@127 132 #define FFTW_WORKER void *
cannam@127 133
cannam@127 134 static void os_create_thread(FFTW_WORKER (*worker)(void *arg),
cannam@127 135 void *arg)
cannam@127 136 {
cannam@127 137 pthread_attr_t attr;
cannam@127 138 pthread_t tid;
cannam@127 139
cannam@127 140 pthread_attr_init(&attr);
cannam@127 141 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
cannam@127 142 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
cannam@127 143
cannam@127 144 pthread_create(&tid, &attr, worker, (void *)arg);
cannam@127 145 pthread_attr_destroy(&attr);
cannam@127 146 }
cannam@127 147
cannam@127 148 static void os_destroy_thread(void)
cannam@127 149 {
cannam@127 150 pthread_exit((void *)0);
cannam@127 151 }
cannam@127 152
cannam@127 153 /* support for static mutexes */
cannam@127 154 typedef pthread_mutex_t os_static_mutex_t;
cannam@127 155 #define OS_STATIC_MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER
cannam@127 156 static void os_static_mutex_lock(os_static_mutex_t *s) { pthread_mutex_lock(s); }
cannam@127 157 static void os_static_mutex_unlock(os_static_mutex_t *s) { pthread_mutex_unlock(s); }
cannam@127 158
cannam@127 159 #elif defined(__WIN32__) || defined(_WIN32) || defined(_WINDOWS)
cannam@127 160 /* hack: windef.h defines INT for its own purposes and this causes
cannam@127 161 a conflict with our own INT in ifftw.h. Divert the windows
cannam@127 162 definition into another name unlikely to cause a conflict */
cannam@127 163 #define INT magnus_ab_INTegro_seclorum_nascitur_ordo
cannam@127 164 #include <windows.h>
cannam@127 165 #include <process.h>
cannam@127 166 #undef INT
cannam@127 167
cannam@127 168 typedef HANDLE os_mutex_t;
cannam@127 169
cannam@127 170 static void os_mutex_init(os_mutex_t *s)
cannam@127 171 {
cannam@127 172 *s = CreateMutex(NULL, FALSE, NULL);
cannam@127 173 }
cannam@127 174
cannam@127 175 static void os_mutex_destroy(os_mutex_t *s)
cannam@127 176 {
cannam@127 177 CloseHandle(*s);
cannam@127 178 }
cannam@127 179
cannam@127 180 static void os_mutex_lock(os_mutex_t *s)
cannam@127 181 {
cannam@127 182 WaitForSingleObject(*s, INFINITE);
cannam@127 183 }
cannam@127 184
cannam@127 185 static void os_mutex_unlock(os_mutex_t *s)
cannam@127 186 {
cannam@127 187 ReleaseMutex(*s);
cannam@127 188 }
cannam@127 189
cannam@127 190 typedef HANDLE os_sem_t;
cannam@127 191
cannam@127 192 static void os_sem_init(os_sem_t *s)
cannam@127 193 {
cannam@127 194 *s = CreateSemaphore(NULL, 0, 0x7FFFFFFFL, NULL);
cannam@127 195 }
cannam@127 196
cannam@127 197 static void os_sem_destroy(os_sem_t *s)
cannam@127 198 {
cannam@127 199 CloseHandle(*s);
cannam@127 200 }
cannam@127 201
cannam@127 202 static void os_sem_down(os_sem_t *s)
cannam@127 203 {
cannam@127 204 WaitForSingleObject(*s, INFINITE);
cannam@127 205 }
cannam@127 206
cannam@127 207 static void os_sem_up(os_sem_t *s)
cannam@127 208 {
cannam@127 209 ReleaseSemaphore(*s, 1, NULL);
cannam@127 210 }
cannam@127 211
cannam@127 212 #define FFTW_WORKER unsigned __stdcall
cannam@127 213 typedef unsigned (__stdcall *winthread_start) (void *);
cannam@127 214
cannam@127 215 static void os_create_thread(winthread_start worker,
cannam@127 216 void *arg)
cannam@127 217 {
cannam@127 218 _beginthreadex((void *)NULL, /* security attrib */
cannam@127 219 0, /* stack size */
cannam@127 220 worker, /* start address */
cannam@127 221 arg, /* parameters */
cannam@127 222 0, /* creation flags */
cannam@127 223 (unsigned *)NULL); /* tid */
cannam@127 224 }
cannam@127 225
cannam@127 226 static void os_destroy_thread(void)
cannam@127 227 {
cannam@127 228 _endthreadex(0);
cannam@127 229 }
cannam@127 230
cannam@127 231 /* windows does not have statically-initialized mutexes---fake a
cannam@127 232 spinlock */
cannam@127 233 typedef volatile LONG os_static_mutex_t;
cannam@127 234 #define OS_STATIC_MUTEX_INITIALIZER 0
cannam@127 235 static void os_static_mutex_lock(os_static_mutex_t *s)
cannam@127 236 {
cannam@127 237 while (InterlockedExchange(s, 1) == 1) {
cannam@127 238 YieldProcessor();
cannam@127 239 Sleep(0);
cannam@127 240 }
cannam@127 241 }
cannam@127 242 static void os_static_mutex_unlock(os_static_mutex_t *s)
cannam@127 243 {
cannam@127 244 LONG old = InterlockedExchange(s, 0);
cannam@127 245 A(old == 1);
cannam@127 246 }
cannam@127 247 #else
cannam@127 248 #error "No threading layer defined"
cannam@127 249 #endif
cannam@127 250
cannam@127 251 /************************************************************************/
cannam@127 252
cannam@127 253 /* Main code: */
cannam@127 254 struct worker {
cannam@127 255 os_sem_t ready;
cannam@127 256 os_sem_t done;
cannam@127 257 struct work *w;
cannam@127 258 struct worker *cdr;
cannam@127 259 };
cannam@127 260
cannam@127 261 static struct worker *make_worker(void)
cannam@127 262 {
cannam@127 263 struct worker *q = (struct worker *)MALLOC(sizeof(*q), OTHER);
cannam@127 264 os_sem_init(&q->ready);
cannam@127 265 os_sem_init(&q->done);
cannam@127 266 return q;
cannam@127 267 }
cannam@127 268
cannam@127 269 static void unmake_worker(struct worker *q)
cannam@127 270 {
cannam@127 271 os_sem_destroy(&q->done);
cannam@127 272 os_sem_destroy(&q->ready);
cannam@127 273 X(ifree)(q);
cannam@127 274 }
cannam@127 275
cannam@127 276 struct work {
cannam@127 277 spawn_function proc;
cannam@127 278 spawn_data d;
cannam@127 279 struct worker *q; /* the worker responsible for performing this work */
cannam@127 280 };
cannam@127 281
cannam@127 282 static os_mutex_t queue_lock;
cannam@127 283 static os_sem_t termination_semaphore;
cannam@127 284
cannam@127 285 static struct worker *worker_queue;
cannam@127 286 #define WITH_QUEUE_LOCK(what) \
cannam@127 287 { \
cannam@127 288 os_mutex_lock(&queue_lock); \
cannam@127 289 what; \
cannam@127 290 os_mutex_unlock(&queue_lock); \
cannam@127 291 }
cannam@127 292
cannam@127 293 static FFTW_WORKER worker(void *arg)
cannam@127 294 {
cannam@127 295 struct worker *ego = (struct worker *)arg;
cannam@127 296 struct work *w;
cannam@127 297
cannam@127 298 for (;;) {
cannam@127 299 /* wait until work becomes available */
cannam@127 300 os_sem_down(&ego->ready);
cannam@127 301
cannam@127 302 w = ego->w;
cannam@127 303
cannam@127 304 /* !w->proc ==> terminate worker */
cannam@127 305 if (!w->proc) break;
cannam@127 306
cannam@127 307 /* do the work */
cannam@127 308 w->proc(&w->d);
cannam@127 309
cannam@127 310 /* signal that work is done */
cannam@127 311 os_sem_up(&ego->done);
cannam@127 312 }
cannam@127 313
cannam@127 314 /* termination protocol */
cannam@127 315 os_sem_up(&termination_semaphore);
cannam@127 316
cannam@127 317 os_destroy_thread();
cannam@127 318 /* UNREACHABLE */
cannam@127 319 return 0;
cannam@127 320 }
cannam@127 321
cannam@127 322 static void enqueue(struct worker *q)
cannam@127 323 {
cannam@127 324 WITH_QUEUE_LOCK({
cannam@127 325 q->cdr = worker_queue;
cannam@127 326 worker_queue = q;
cannam@127 327 });
cannam@127 328 }
cannam@127 329
cannam@127 330 static struct worker *dequeue(void)
cannam@127 331 {
cannam@127 332 struct worker *q;
cannam@127 333
cannam@127 334 WITH_QUEUE_LOCK({
cannam@127 335 q = worker_queue;
cannam@127 336 if (q)
cannam@127 337 worker_queue = q->cdr;
cannam@127 338 });
cannam@127 339
cannam@127 340 if (!q) {
cannam@127 341 /* no worker is available. Create one */
cannam@127 342 q = make_worker();
cannam@127 343 os_create_thread(worker, q);
cannam@127 344 }
cannam@127 345
cannam@127 346 return q;
cannam@127 347 }
cannam@127 348
cannam@127 349
cannam@127 350 static void kill_workforce(void)
cannam@127 351 {
cannam@127 352 struct work w;
cannam@127 353
cannam@127 354 w.proc = 0;
cannam@127 355
cannam@127 356 THREAD_ON; /* needed for debugging mode: since make_worker
cannam@127 357 is called from dequeue which is only called in
cannam@127 358 thread_on mode, we need to unmake_worker in thread_on. */
cannam@127 359 WITH_QUEUE_LOCK({
cannam@127 360 /* tell all workers that they must terminate.
cannam@127 361
cannam@127 362 Because workers enqueue themselves before signaling the
cannam@127 363 completion of the work, all workers belong to the worker queue
cannam@127 364 if we get here. Also, all workers are waiting at
cannam@127 365 os_sem_down(ready), so we can hold the queue lock without
cannam@127 366 deadlocking */
cannam@127 367 while (worker_queue) {
cannam@127 368 struct worker *q = worker_queue;
cannam@127 369 worker_queue = q->cdr;
cannam@127 370 q->w = &w;
cannam@127 371 os_sem_up(&q->ready);
cannam@127 372 os_sem_down(&termination_semaphore);
cannam@127 373 unmake_worker(q);
cannam@127 374 }
cannam@127 375 });
cannam@127 376 THREAD_OFF;
cannam@127 377 }
cannam@127 378
cannam@127 379 static os_static_mutex_t initialization_mutex = OS_STATIC_MUTEX_INITIALIZER;
cannam@127 380
cannam@127 381 int X(ithreads_init)(void)
cannam@127 382 {
cannam@127 383 os_static_mutex_lock(&initialization_mutex); {
cannam@127 384 os_mutex_init(&queue_lock);
cannam@127 385 os_sem_init(&termination_semaphore);
cannam@127 386
cannam@127 387 WITH_QUEUE_LOCK({
cannam@127 388 worker_queue = 0;
cannam@127 389 });
cannam@127 390 } os_static_mutex_unlock(&initialization_mutex);
cannam@127 391
cannam@127 392 return 0; /* no error */
cannam@127 393 }
cannam@127 394
cannam@127 395 /* Distribute a loop from 0 to loopmax-1 over nthreads threads.
cannam@127 396 proc(d) is called to execute a block of iterations from d->min
cannam@127 397 to d->max-1. d->thr_num indicate the number of the thread
cannam@127 398 that is executing proc (from 0 to nthreads-1), and d->data is
cannam@127 399 the same as the data parameter passed to X(spawn_loop).
cannam@127 400
cannam@127 401 This function returns only after all the threads have completed. */
cannam@127 402 void X(spawn_loop)(int loopmax, int nthr, spawn_function proc, void *data)
cannam@127 403 {
cannam@127 404 int block_size;
cannam@127 405 struct work *r;
cannam@127 406 int i;
cannam@127 407
cannam@127 408 A(loopmax >= 0);
cannam@127 409 A(nthr > 0);
cannam@127 410 A(proc);
cannam@127 411
cannam@127 412 if (!loopmax) return;
cannam@127 413
cannam@127 414 /* Choose the block size and number of threads in order to (1)
cannam@127 415 minimize the critical path and (2) use the fewest threads that
cannam@127 416 achieve the same critical path (to minimize overhead).
cannam@127 417 e.g. if loopmax is 5 and nthr is 4, we should use only 3
cannam@127 418 threads with block sizes of 2, 2, and 1. */
cannam@127 419 block_size = (loopmax + nthr - 1) / nthr;
cannam@127 420 nthr = (loopmax + block_size - 1) / block_size;
cannam@127 421
cannam@127 422 THREAD_ON; /* prevent debugging mode from failing under threads */
cannam@127 423 STACK_MALLOC(struct work *, r, sizeof(struct work) * nthr);
cannam@127 424
cannam@127 425 /* distribute work: */
cannam@127 426 for (i = 0; i < nthr; ++i) {
cannam@127 427 struct work *w = &r[i];
cannam@127 428 spawn_data *d = &w->d;
cannam@127 429
cannam@127 430 d->max = (d->min = i * block_size) + block_size;
cannam@127 431 if (d->max > loopmax)
cannam@127 432 d->max = loopmax;
cannam@127 433 d->thr_num = i;
cannam@127 434 d->data = data;
cannam@127 435 w->proc = proc;
cannam@127 436
cannam@127 437 if (i == nthr - 1) {
cannam@127 438 /* do the work ourselves */
cannam@127 439 proc(d);
cannam@127 440 } else {
cannam@127 441 /* assign a worker to W */
cannam@127 442 w->q = dequeue();
cannam@127 443
cannam@127 444 /* tell worker w->q to do it */
cannam@127 445 w->q->w = w; /* Dirac could have written this */
cannam@127 446 os_sem_up(&w->q->ready);
cannam@127 447 }
cannam@127 448 }
cannam@127 449
cannam@127 450 for (i = 0; i < nthr - 1; ++i) {
cannam@127 451 struct work *w = &r[i];
cannam@127 452 os_sem_down(&w->q->done);
cannam@127 453 enqueue(w->q);
cannam@127 454 }
cannam@127 455
cannam@127 456 STACK_FREE(r);
cannam@127 457 THREAD_OFF; /* prevent debugging mode from failing under threads */
cannam@127 458 }
cannam@127 459
cannam@127 460 void X(threads_cleanup)(void)
cannam@127 461 {
cannam@127 462 kill_workforce();
cannam@127 463 os_mutex_destroy(&queue_lock);
cannam@127 464 os_sem_destroy(&termination_semaphore);
cannam@127 465 }
cannam@127 466
cannam@127 467 static os_static_mutex_t install_planner_hooks_mutex = OS_STATIC_MUTEX_INITIALIZER;
cannam@127 468 static os_mutex_t planner_mutex;
cannam@127 469 static int planner_hooks_installed = 0;
cannam@127 470
cannam@127 471 static void lock_planner_mutex(void)
cannam@127 472 {
cannam@127 473 os_mutex_lock(&planner_mutex);
cannam@127 474 }
cannam@127 475
cannam@127 476 static void unlock_planner_mutex(void)
cannam@127 477 {
cannam@127 478 os_mutex_unlock(&planner_mutex);
cannam@127 479 }
cannam@127 480
cannam@127 481 void X(threads_register_planner_hooks)(void)
cannam@127 482 {
cannam@127 483 os_static_mutex_lock(&install_planner_hooks_mutex); {
cannam@127 484 if (!planner_hooks_installed) {
cannam@127 485 os_mutex_init(&planner_mutex);
cannam@127 486 X(set_planner_hooks)(lock_planner_mutex, unlock_planner_mutex);
cannam@127 487 planner_hooks_installed = 1;
cannam@127 488 }
cannam@127 489 } os_static_mutex_unlock(&install_planner_hooks_mutex);
cannam@127 490 }