annotate src/fftw-3.3.5/simd-support/simd-kcvi.h @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * Knights Corner Vector Instruction support added by Romain Dolbeau.
cannam@127 6 * Romain Dolbeau hereby places his modifications in the public domain.
cannam@127 7 *
cannam@127 8 * Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@127 9 * of this software and associated documentation files (the "Software"), to deal
cannam@127 10 * in the Software without restriction, including without limitation the rights
cannam@127 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@127 12 * copies of the Software, and to permit persons to whom the Software is
cannam@127 13 * furnished to do so, subject to the following conditions:
cannam@127 14 *
cannam@127 15 * The above copyright notice and this permission notice shall be included in
cannam@127 16 * all copies or substantial portions of the Software.
cannam@127 17 *
cannam@127 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@127 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@127 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@127 21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@127 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@127 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@127 24 * THE SOFTWARE.
cannam@127 25 *
cannam@127 26 */
cannam@127 27
cannam@127 28 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
cannam@127 29 #error "Knights Corner vector instructions only works in single or double precision"
cannam@127 30 #endif
cannam@127 31
cannam@127 32 #ifdef FFTW_SINGLE
cannam@127 33 # define DS(d,s) s /* single-precision option */
cannam@127 34 # define SUFF(name) name ## _ps
cannam@127 35 # define SCAL(x) x ## f
cannam@127 36 #else /* !FFTW_SINGLE */
cannam@127 37 # define DS(d,s) d /* double-precision option */
cannam@127 38 # define SUFF(name) name ## _pd
cannam@127 39 # define SCAL(x) x
cannam@127 40 #endif /* FFTW_SINGLE */
cannam@127 41
cannam@127 42 #define SIMD_SUFFIX _kcvi /* for renaming */
cannam@127 43 #define VL DS(4, 8) /* SIMD complex vector length */
cannam@127 44 #define SIMD_VSTRIDE_OKA(x) ((x) == 2)
cannam@127 45 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
cannam@127 46
cannam@127 47 /* configuration ; KNF 0 0 0 1 0 1 */
cannam@127 48 #define KCVI_VBYI_SINGLE_USE_MUL 0
cannam@127 49 #define KCVI_VBYI_DOUBLE_USE_MUL 0
cannam@127 50 #define KCVI_LD_DOUBLE_USE_UNPACK 1
cannam@127 51 #define KCVI_ST_DOUBLE_USE_PACK 1
cannam@127 52 #define KCVI_ST2_DOUBLE_USE_STN2 0
cannam@127 53 #define KCVI_MULZ_USE_SWIZZLE 1
cannam@127 54
cannam@127 55 #include <immintrin.h>
cannam@127 56
cannam@127 57 typedef DS(__m512d, __m512) V;
cannam@127 58
cannam@127 59 #define VADD(a,b) SUFF(_mm512_add)(a,b)
cannam@127 60 #define VSUB(a,b) SUFF(_mm512_sub)(a,b)
cannam@127 61 #define VMUL(a,b) SUFF(_mm512_mul)(a,b)
cannam@127 62
cannam@127 63 #define VFMA(a, b, c) SUFF(_mm512_fmadd)(a, b, c) //VADD(c, VMUL(a, b))
cannam@127 64 #define VFMS(a, b, c) SUFF(_mm512_fmsub)(a, b, c) //VSUB(VMUL(a, b), c)
cannam@127 65 #define VFNMS(a, b, c) SUFF(_mm512_fnmadd)(a, b, c) //VSUB(c, VMUL(a, b))
cannam@127 66
cannam@127 67 #define LDK(x) x
cannam@127 68 #define VLIT(re, im) SUFF(_mm512_setr4)(im, re, im, re)
cannam@127 69 #define DVK(var, val) V var = SUFF(_mm512_set1)(val)
cannam@127 70
cannam@127 71 static inline V LDA(const R *x, INT ivs, const R *aligned_like) {
cannam@127 72 return SUFF(_mm512_load)(x);
cannam@127 73 }
cannam@127 74 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) {
cannam@127 75 SUFF(_mm512_store)(x, v);
cannam@127 76 }
cannam@127 77
cannam@127 78 #if FFTW_SINGLE
cannam@127 79 #define VXOR(a,b) _mm512_xor_epi32(a,b)
cannam@127 80
cannam@127 81 static inline V LDu(const R *x, INT ivs, const R *aligned_like)
cannam@127 82 {
cannam@127 83 (void)aligned_like; /* UNUSED */
cannam@127 84 __m512i index = _mm512_set_epi32(7 * ivs + 1, 7 * ivs,
cannam@127 85 6 * ivs + 1, 6 * ivs,
cannam@127 86 5 * ivs + 1, 5 * ivs,
cannam@127 87 4 * ivs + 1, 4 * ivs,
cannam@127 88 3 * ivs + 1, 3 * ivs,
cannam@127 89 2 * ivs + 1, 2 * ivs,
cannam@127 90 1 * ivs + 1, 1 * ivs,
cannam@127 91 0 * ivs + 1, 0 * ivs);
cannam@127 92
cannam@127 93 return _mm512_i32gather_ps(index, x, _MM_SCALE_4);
cannam@127 94 }
cannam@127 95
cannam@127 96 static inline void STu(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 97 {
cannam@127 98 (void)aligned_like; /* UNUSED */
cannam@127 99 __m512i index = _mm512_set_epi32(7 * ovs + 1, 7 * ovs,
cannam@127 100 6 * ovs + 1, 6 * ovs,
cannam@127 101 5 * ovs + 1, 5 * ovs,
cannam@127 102 4 * ovs + 1, 4 * ovs,
cannam@127 103 3 * ovs + 1, 3 * ovs,
cannam@127 104 2 * ovs + 1, 2 * ovs,
cannam@127 105 1 * ovs + 1, 1 * ovs,
cannam@127 106 0 * ovs + 1, 0 * ovs);
cannam@127 107
cannam@127 108 _mm512_i32scatter_ps(x, index, v, _MM_SCALE_4);
cannam@127 109 }
cannam@127 110
cannam@127 111 static inline V FLIP_RI(V x)
cannam@127 112 {
cannam@127 113 return (V)_mm512_shuffle_epi32((__m512i)x, _MM_PERM_CDAB);
cannam@127 114 }
cannam@127 115
cannam@127 116 #define VDUPH(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_DDBB);
cannam@127 117 #define VDUPL(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_CCAA);
cannam@127 118
cannam@127 119 #else /* !FFTW_SINGLE */
cannam@127 120 #define VXOR(a,b) _mm512_xor_epi64(a,b)
cannam@127 121
cannam@127 122 #if defined (KCVI_LD_DOUBLE_USE_UNPACK) && KCVI_LD_DOUBLE_USE_UNPACK
cannam@127 123 static inline V LDu(const R *x, INT ivs, const R *aligned_like)
cannam@127 124 {
cannam@127 125 (void)aligned_like; /* UNUSED */
cannam@127 126 V temp;
cannam@127 127 /* no need for hq here */
cannam@127 128 temp = _mm512_mask_loadunpacklo_pd(temp, 0x0003, x + (0 * ivs));
cannam@127 129 temp = _mm512_mask_loadunpacklo_pd(temp, 0x000c, x + (1 * ivs));
cannam@127 130 temp = _mm512_mask_loadunpacklo_pd(temp, 0x0030, x + (2 * ivs));
cannam@127 131 temp = _mm512_mask_loadunpacklo_pd(temp, 0x00c0, x + (3 * ivs));
cannam@127 132 return temp;
cannam@127 133 }
cannam@127 134 #else
cannam@127 135 static inline V LDu(const R *x, INT ivs, const R *aligned_like)
cannam@127 136 {
cannam@127 137 (void)aligned_like; /* UNUSED */
cannam@127 138 __declspec(align(64)) R temp[8];
cannam@127 139 int i;
cannam@127 140 for (i = 0 ; i < 4 ; i++) {
cannam@127 141 temp[i*2] = x[i * ivs];
cannam@127 142 temp[i*2+1] = x[i * ivs + 1];
cannam@127 143 }
cannam@127 144 return _mm512_load_pd(temp);
cannam@127 145 }
cannam@127 146 #endif
cannam@127 147
cannam@127 148 #if defined(KCVI_ST_DOUBLE_USE_PACK) && KCVI_ST_DOUBLE_USE_PACK
cannam@127 149 static inline void STu(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 150 {
cannam@127 151 (void)aligned_like; /* UNUSED */
cannam@127 152 /* no need for hq here */
cannam@127 153 _mm512_mask_packstorelo_pd(x + (0 * ovs), 0x0003, v);
cannam@127 154 _mm512_mask_packstorelo_pd(x + (1 * ovs), 0x000c, v);
cannam@127 155 _mm512_mask_packstorelo_pd(x + (2 * ovs), 0x0030, v);
cannam@127 156 _mm512_mask_packstorelo_pd(x + (3 * ovs), 0x00c0, v);
cannam@127 157 }
cannam@127 158 #else
cannam@127 159 static inline void STu(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 160 {
cannam@127 161 (void)aligned_like; /* UNUSED */
cannam@127 162 __declspec(align(64)) R temp[8];
cannam@127 163 int i;
cannam@127 164 _mm512_store_pd(temp, v);
cannam@127 165 for (i = 0 ; i < 4 ; i++) {
cannam@127 166 x[i * ovs] = temp[i*2];
cannam@127 167 x[i * ovs + 1] = temp[i*2+1];
cannam@127 168 }
cannam@127 169 }
cannam@127 170 #endif
cannam@127 171
cannam@127 172 static inline V FLIP_RI(V x)
cannam@127 173 {
cannam@127 174 return (V)_mm512_shuffle_epi32((__m512i)x, _MM_PERM_BADC);
cannam@127 175 }
cannam@127 176
cannam@127 177 #define VDUPH(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_DCDC);
cannam@127 178 #define VDUPL(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_BABA);
cannam@127 179
cannam@127 180 #endif /* FFTW_SINGLE */
cannam@127 181
cannam@127 182 #define LD LDu
cannam@127 183 #define ST STu
cannam@127 184
cannam@127 185 #ifdef FFTW_SINGLE
cannam@127 186 #define STM2(x, v, ovs, a) ST(x, v, ovs, a)
cannam@127 187 #define STN2(x, v0, v1, ovs) /* nop */
cannam@127 188
cannam@127 189 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 190 {
cannam@127 191 (void)aligned_like; /* UNUSED */
cannam@127 192 __m512i index = _mm512_set_epi32(15 * ovs, 14 * ovs,
cannam@127 193 13 * ovs, 12 * ovs,
cannam@127 194 11 * ovs, 10 * ovs,
cannam@127 195 9 * ovs, 8 * ovs,
cannam@127 196 7 * ovs, 6 * ovs,
cannam@127 197 5 * ovs, 4 * ovs,
cannam@127 198 3 * ovs, 2 * ovs,
cannam@127 199 1 * ovs, 0 * ovs);
cannam@127 200
cannam@127 201 _mm512_i32scatter_ps(x, index, v, _MM_SCALE_4);
cannam@127 202 }
cannam@127 203 #define STN4(x, v0, v1, v2, v3, ovs) /* no-op */
cannam@127 204 #else /* !FFTW_SINGLE */
cannam@127 205 #if defined(KCVI_ST2_DOUBLE_USE_STN2) && KCVI_ST2_DOUBLE_USE_STN2
cannam@127 206 #define STM2(x, v, ovs, a) /* no-op */
cannam@127 207 static inline void STN2(R *x, V v0, V v1, INT ovs) {
cannam@127 208 /* we start
cannam@127 209 AB CD EF GH -> *x (2 DBL), ovs between complex
cannam@127 210 IJ KL MN OP -> *(x+2) (2DBL), ovs between complex
cannam@127 211 and we want
cannam@127 212 ABIJ EFMN -> *x (4 DBL), 2 * ovs between complex pairs
cannam@127 213 CDKL GHOP -> *(x+ovs) (4DBL), 2 * ovs between complex pairs
cannam@127 214 */
cannam@127 215 V x00 = (V)_mm512_mask_permute4f128_epi32((__m512i)v0, 0xF0F0, (__m512i)v1, _MM_PERM_CDAB);
cannam@127 216 V x01 = (V)_mm512_mask_permute4f128_epi32((__m512i)v1, 0x0F0F, (__m512i)v0, _MM_PERM_CDAB);
cannam@127 217 _mm512_mask_packstorelo_pd(x + (0 * ovs) + 0, 0x000F, x00);
cannam@127 218 /* _mm512_mask_packstorehi_pd(x + (0 * ovs) + 8, 0x000F, x00); */
cannam@127 219 _mm512_mask_packstorelo_pd(x + (2 * ovs) + 0, 0x00F0, x00);
cannam@127 220 /* _mm512_mask_packstorehi_pd(x + (2 * ovs) + 8, 0x00F0, x00); */
cannam@127 221 _mm512_mask_packstorelo_pd(x + (1 * ovs) + 0, 0x000F, x01);
cannam@127 222 /* _mm512_mask_packstorehi_pd(x + (1 * ovs) + 8, 0x000F, x01); */
cannam@127 223 _mm512_mask_packstorelo_pd(x + (3 * ovs) + 0, 0x00F0, x01);
cannam@127 224 /* _mm512_mask_packstorehi_pd(x + (3 * ovs) + 8, 0x00F0, x01); */
cannam@127 225 }
cannam@127 226 #else
cannam@127 227 #define STM2(x, v, ovs, a) ST(x, v, ovs, a)
cannam@127 228 #define STN2(x, v0, v1, ovs) /* nop */
cannam@127 229 #endif
cannam@127 230
cannam@127 231 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 232 {
cannam@127 233 (void)aligned_like; /* UNUSED */
cannam@127 234 __m512i index = _mm512_set_epi32(0, 0, 0, 0, 0, 0, 0, 0,
cannam@127 235 7 * ovs, 6 * ovs,
cannam@127 236 5 * ovs, 4 * ovs,
cannam@127 237 3 * ovs, 2 * ovs,
cannam@127 238 1 * ovs, 0 * ovs);
cannam@127 239
cannam@127 240 _mm512_i32loscatter_pd(x, index, v, _MM_SCALE_8);
cannam@127 241 }
cannam@127 242 #define STN4(x, v0, v1, v2, v3, ovs) /* no-op */
cannam@127 243 #endif /* FFTW_SINGLE */
cannam@127 244
cannam@127 245 static inline V VFMAI(V b, V c) {
cannam@127 246 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0));
cannam@127 247 return SUFF(_mm512_fmadd)(mpmp, SUFF(_mm512_swizzle)(b, _MM_SWIZ_REG_CDAB), c);
cannam@127 248 }
cannam@127 249
cannam@127 250 static inline V VFNMSI(V b, V c) {
cannam@127 251 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0));
cannam@127 252 return SUFF(_mm512_fnmadd)(mpmp, SUFF(_mm512_swizzle)(b, _MM_SWIZ_REG_CDAB), c);
cannam@127 253 }
cannam@127 254
cannam@127 255 static inline V VFMACONJ(V b, V c) {
cannam@127 256 V pmpm = VLIT(SCAL(-1.0), SCAL(1.0));
cannam@127 257 return SUFF(_mm512_fmadd)(pmpm, b, c);
cannam@127 258 }
cannam@127 259
cannam@127 260 static inline V VFMSCONJ(V b, V c) {
cannam@127 261 V pmpm = VLIT(SCAL(-1.0), SCAL(1.0));
cannam@127 262 return SUFF(_mm512_fmsub)(pmpm, b, c);
cannam@127 263 }
cannam@127 264
cannam@127 265 static inline V VFNMSCONJ(V b, V c) {
cannam@127 266 V pmpm = VLIT(SCAL(-1.0), SCAL(1.0));
cannam@127 267 return SUFF(_mm512_fnmadd)(pmpm, b, c);
cannam@127 268 }
cannam@127 269
cannam@127 270 static inline V VCONJ(V x)
cannam@127 271 {
cannam@127 272 V pmpm = VLIT(SCAL(-0.0), SCAL(0.0));
cannam@127 273 return (V)VXOR((__m512i)pmpm, (__m512i)x);
cannam@127 274 }
cannam@127 275
cannam@127 276 #ifdef FFTW_SINGLE
cannam@127 277 #if defined(KCVI_VBYI_SINGLE_USE_MUL) && KCVI_VBYI_SINGLE_USE_MUL
cannam@127 278 /* untested */
cannam@127 279 static inline V VBYI(V x)
cannam@127 280 {
cannam@127 281 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0));
cannam@127 282 return _mm512_mul_ps(mpmp, _mm512_swizzle_ps(x, _MM_SWIZ_REG_CDAB));
cannam@127 283 }
cannam@127 284 #else
cannam@127 285 static inline V VBYI(V x)
cannam@127 286 {
cannam@127 287 return FLIP_RI(VCONJ(x));
cannam@127 288 }
cannam@127 289 #endif
cannam@127 290 #else /* !FFTW_SINGLE */
cannam@127 291 #if defined(KCVI_VBYI_DOUBLE_USE_MUL) && KCVI_VBYI_DOUBLE_USE_MUL
cannam@127 292 /* on KNF, using mul_pd is slower than shuf128x32 + xor */
cannam@127 293 static inline V VBYI(V x)
cannam@127 294 {
cannam@127 295 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0));
cannam@127 296 return _mm512_mul_pd(mpmp, _mm512_swizzle_pd(x, _MM_SWIZ_REG_CDAB));
cannam@127 297 }
cannam@127 298 #else
cannam@127 299 static inline V VBYI(V x)
cannam@127 300 {
cannam@127 301 return FLIP_RI(VCONJ(x));
cannam@127 302 }
cannam@127 303 #endif
cannam@127 304 #endif /* FFTW_SINGLE */
cannam@127 305
cannam@127 306 #if defined(KCVI_MULZ_USE_SWIZZLE) && KCVI_MULZ_USE_SWIZZLE
cannam@127 307 static inline V VZMUL(V tx, V sr) /* (a,b) (c,d) */
cannam@127 308 {
cannam@127 309 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */
cannam@127 310 V ad = SUFF(_mm512_mul)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB)); /* (a*d,b*c) */
cannam@127 311 V acmbd = SUFF(_mm512_sub)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (a*c-b*d, b*d-a*c) */
cannam@127 312 V res = SUFF(_mm512_mask_add)(acmbd, DS(0x00aa,0xaaaa), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* ([a*c+b*c] a*c-b*d, b*c+a*d) */
cannam@127 313 return res;
cannam@127 314 }
cannam@127 315 static inline V VZMULJ(V tx, V sr) /* (a,b) (c,d) */
cannam@127 316 {
cannam@127 317 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */
cannam@127 318 V ad = SUFF(_mm512_mul)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB)); /* (a*d,b*c) */
cannam@127 319 V acmbd = SUFF(_mm512_add)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (a*c+b*d, b*d+a*c) */
cannam@127 320 V res = SUFF(_mm512_mask_subr)(acmbd, DS(0x00aa,0xaaaa), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* ([a*c+b*c] a*c+b*d, a*d-b*c) */
cannam@127 321 return res;
cannam@127 322 }
cannam@127 323 static inline V VZMULI(V tx, V sr) /* (a,b) (c,d) */
cannam@127 324 {
cannam@127 325 DVK(zero, SCAL(0.0));
cannam@127 326 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */
cannam@127 327 V ad = SUFF(_mm512_fnmadd)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB), zero); /* (-a*d,-b*c) */
cannam@127 328 V acmbd = SUFF(_mm512_subr)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (b*d-a*c, a*c-b*d) */
cannam@127 329 V res = SUFF(_mm512_mask_add)(acmbd, DS(0x0055,0x5555), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* (-a*d-b*c, a*c-b*d) */
cannam@127 330 return res;
cannam@127 331 }
cannam@127 332 static inline V VZMULIJ(V tx, V sr) /* (a,b) (c,d) */
cannam@127 333 {
cannam@127 334 DVK(zero, SCAL(0.0));
cannam@127 335 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */
cannam@127 336 V ad = SUFF(_mm512_fnmadd)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB), zero); /* (-a*d,-b*c) */
cannam@127 337 V acmbd = SUFF(_mm512_add)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (b*d+a*c, a*c+b*d) */
cannam@127 338 V res = SUFF(_mm512_mask_sub)(acmbd, DS(0x0055,0x5555), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* (-a*d+b*c, a*c-b*d) */
cannam@127 339 return res;
cannam@127 340 }
cannam@127 341 #else
cannam@127 342 static inline V VZMUL(V tx, V sr)
cannam@127 343 {
cannam@127 344 V tr = VDUPL(tx);
cannam@127 345 V ti = VDUPH(tx);
cannam@127 346 tr = VMUL(sr, tr);
cannam@127 347 sr = VBYI(sr);
cannam@127 348 return VFMA(ti, sr, tr);
cannam@127 349 }
cannam@127 350
cannam@127 351 static inline V VZMULJ(V tx, V sr)
cannam@127 352 {
cannam@127 353 V tr = VDUPL(tx);
cannam@127 354 V ti = VDUPH(tx);
cannam@127 355 tr = VMUL(sr, tr);
cannam@127 356 sr = VBYI(sr);
cannam@127 357 return VFNMS(ti, sr, tr);
cannam@127 358 }
cannam@127 359
cannam@127 360 static inline V VZMULI(V tx, V sr)
cannam@127 361 {
cannam@127 362 V tr = VDUPL(tx);
cannam@127 363 V ti = VDUPH(tx);
cannam@127 364 ti = VMUL(ti, sr);
cannam@127 365 sr = VBYI(sr);
cannam@127 366 return VFMS(tr, sr, ti);
cannam@127 367 }
cannam@127 368
cannam@127 369 static inline V VZMULIJ(V tx, V sr)
cannam@127 370 {
cannam@127 371 V tr = VDUPL(tx);
cannam@127 372 V ti = VDUPH(tx);
cannam@127 373 ti = VMUL(ti, sr);
cannam@127 374 sr = VBYI(sr);
cannam@127 375 return VFMA(tr, sr, ti);
cannam@127 376 }
cannam@127 377 #endif
cannam@127 378
cannam@127 379 /* twiddle storage #1: compact, slower */
cannam@127 380 #ifdef FFTW_SINGLE
cannam@127 381 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}, {TW_CEXP, v+4, x}, {TW_CEXP, v+5, x}, {TW_CEXP, v+6, x}, {TW_CEXP, v+7, x}
cannam@127 382 #else /* !FFTW_SINGLE */
cannam@127 383 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
cannam@127 384 #endif /* FFTW_SINGLE */
cannam@127 385 #define TWVL1 (VL)
cannam@127 386
cannam@127 387 static inline V BYTW1(const R *t, V sr)
cannam@127 388 {
cannam@127 389 return VZMUL(LDA(t, 2, t), sr);
cannam@127 390 }
cannam@127 391
cannam@127 392 static inline V BYTWJ1(const R *t, V sr)
cannam@127 393 {
cannam@127 394 return VZMULJ(LDA(t, 2, t), sr);
cannam@127 395 }
cannam@127 396
cannam@127 397 /* twiddle storage #2: twice the space, faster (when in cache) */
cannam@127 398 #ifdef FFTW_SINGLE
cannam@127 399 # define VTW2(v,x) \
cannam@127 400 {TW_COS, v , x}, {TW_COS, v , x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
cannam@127 401 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
cannam@127 402 {TW_COS, v+4, x}, {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+5, x}, \
cannam@127 403 {TW_COS, v+6, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, {TW_COS, v+7, x}, \
cannam@127 404 {TW_SIN, v , -x}, {TW_SIN, v , x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
cannam@127 405 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}, \
cannam@127 406 {TW_SIN, v+4, -x}, {TW_SIN, v+4, x}, {TW_SIN, v+5, -x}, {TW_SIN, v+5, x}, \
cannam@127 407 {TW_SIN, v+6, -x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, -x}, {TW_SIN, v+7, x}
cannam@127 408 #else /* !FFTW_SINGLE */
cannam@127 409 # define VTW2(v,x) \
cannam@127 410 {TW_COS, v , x}, {TW_COS, v , x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
cannam@127 411 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
cannam@127 412 {TW_SIN, v , -x}, {TW_SIN, v , x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
cannam@127 413 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
cannam@127 414 #endif /* FFTW_SINGLE */
cannam@127 415 #define TWVL2 (2 * VL)
cannam@127 416
cannam@127 417 static inline V BYTW2(const R *t, V sr)
cannam@127 418 {
cannam@127 419 const V *twp = (const V *)t;
cannam@127 420 V si = FLIP_RI(sr);
cannam@127 421 V tr = twp[0], ti = twp[1];
cannam@127 422 /* V tr = LD(t, 2, t), ti = LD(t + VL, 2, t + VL); */
cannam@127 423 return VFMA(tr, sr, VMUL(ti, si));
cannam@127 424 }
cannam@127 425
cannam@127 426 static inline V BYTWJ2(const R *t, V sr)
cannam@127 427 {
cannam@127 428 const V *twp = (const V *)t;
cannam@127 429 V si = FLIP_RI(sr);
cannam@127 430 V tr = twp[0], ti = twp[1];
cannam@127 431 /* V tr = LD(t, 2, t), ti = LD(t + VL, 2, t + VL); */
cannam@127 432 return VFNMS(ti, si, VMUL(tr, sr));
cannam@127 433 }
cannam@127 434
cannam@127 435 /* twiddle storage #3 */
cannam@127 436 #define VTW3(v,x) VTW1(v,x)
cannam@127 437 #define TWVL3 TWVL1
cannam@127 438
cannam@127 439 /* twiddle storage for split arrays */
cannam@127 440 #ifdef FFTW_SINGLE
cannam@127 441 # define VTWS(v,x) \
cannam@127 442 {TW_COS, v , x}, {TW_COS, v+1 , x}, {TW_COS, v+2 , x}, {TW_COS, v+3 , x}, \
cannam@127 443 {TW_COS, v+4 , x}, {TW_COS, v+5 , x}, {TW_COS, v+6 , x}, {TW_COS, v+7 , x}, \
cannam@127 444 {TW_COS, v+8 , x}, {TW_COS, v+9 , x}, {TW_COS, v+10, x}, {TW_COS, v+11, x}, \
cannam@127 445 {TW_COS, v+12, x}, {TW_COS, v+13, x}, {TW_COS, v+14, x}, {TW_COS, v+15, x}, \
cannam@127 446 {TW_SIN, v , x}, {TW_SIN, v+1 , x}, {TW_SIN, v+2 , x}, {TW_SIN, v+3 , x}, \
cannam@127 447 {TW_SIN, v+4 , x}, {TW_SIN, v+5 , x}, {TW_SIN, v+6 , x}, {TW_SIN, v+7 , x}, \
cannam@127 448 {TW_SIN, v+8 , x}, {TW_SIN, v+9 , x}, {TW_SIN, v+10, x}, {TW_SIN, v+11, x}, \
cannam@127 449 {TW_SIN, v+12, x}, {TW_SIN, v+13, x}, {TW_SIN, v+14, x}, {TW_SIN, v+15, x}
cannam@127 450 #else /* !FFTW_SINGLE */
cannam@127 451 # define VTWS(v,x) \
cannam@127 452 {TW_COS, v , x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
cannam@127 453 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
cannam@127 454 {TW_SIN, v , x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
cannam@127 455 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
cannam@127 456 #endif /* FFTW_SINGLE */
cannam@127 457 #define TWVLS (2 * VL)
cannam@127 458
cannam@127 459 #define VLEAVE() /* nothing */
cannam@127 460
cannam@127 461 #include "simd-common.h"