annotate src/fftw-3.3.5/reodft/reodft11e-r2hc.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
cannam@127 23 pre/post-processing ala FFTPACK. Use a trick from:
cannam@127 24
cannam@127 25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
cannam@127 26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
cannam@127 27
cannam@127 28 to re-express as an REDFT01 (DCT-III) problem.
cannam@127 29
cannam@127 30 NOTE: We no longer use this algorithm, because it turns out to suffer
cannam@127 31 a catastrophic loss of accuracy for certain inputs, apparently because
cannam@127 32 its post-processing multiplies the output by a cosine. Near the zero
cannam@127 33 of the cosine, the REDFT01 must produce a near-singular output.
cannam@127 34 */
cannam@127 35
cannam@127 36 #include "reodft.h"
cannam@127 37
cannam@127 38 typedef struct {
cannam@127 39 solver super;
cannam@127 40 } S;
cannam@127 41
cannam@127 42 typedef struct {
cannam@127 43 plan_rdft super;
cannam@127 44 plan *cld;
cannam@127 45 twid *td, *td2;
cannam@127 46 INT is, os;
cannam@127 47 INT n;
cannam@127 48 INT vl;
cannam@127 49 INT ivs, ovs;
cannam@127 50 rdft_kind kind;
cannam@127 51 } P;
cannam@127 52
cannam@127 53 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@127 54 {
cannam@127 55 const P *ego = (const P *) ego_;
cannam@127 56 INT is = ego->is, os = ego->os;
cannam@127 57 INT i, n = ego->n;
cannam@127 58 INT iv, vl = ego->vl;
cannam@127 59 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 60 R *W;
cannam@127 61 R *buf;
cannam@127 62 E cur;
cannam@127 63
cannam@127 64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 65
cannam@127 66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 67 /* I wish that this didn't require an extra pass. */
cannam@127 68 /* FIXME: use recursive/cascade summation for better stability? */
cannam@127 69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
cannam@127 70 for (i = n - 1; i > 0; --i) {
cannam@127 71 E curnew;
cannam@127 72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
cannam@127 73 cur = curnew;
cannam@127 74 }
cannam@127 75
cannam@127 76 W = ego->td->W;
cannam@127 77 for (i = 1; i < n - i; ++i) {
cannam@127 78 E a, b, apb, amb, wa, wb;
cannam@127 79 a = buf[i];
cannam@127 80 b = buf[n - i];
cannam@127 81 apb = a + b;
cannam@127 82 amb = a - b;
cannam@127 83 wa = W[2*i];
cannam@127 84 wb = W[2*i + 1];
cannam@127 85 buf[i] = wa * amb + wb * apb;
cannam@127 86 buf[n - i] = wa * apb - wb * amb;
cannam@127 87 }
cannam@127 88 if (i == n - i) {
cannam@127 89 buf[i] = K(2.0) * buf[i] * W[2*i];
cannam@127 90 }
cannam@127 91
cannam@127 92 {
cannam@127 93 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 94 cld->apply((plan *) cld, buf, buf);
cannam@127 95 }
cannam@127 96
cannam@127 97 W = ego->td2->W;
cannam@127 98 O[0] = W[0] * buf[0];
cannam@127 99 for (i = 1; i < n - i; ++i) {
cannam@127 100 E a, b;
cannam@127 101 INT k;
cannam@127 102 a = buf[i];
cannam@127 103 b = buf[n - i];
cannam@127 104 k = i + i;
cannam@127 105 O[os * (k - 1)] = W[k - 1] * (a - b);
cannam@127 106 O[os * k] = W[k] * (a + b);
cannam@127 107 }
cannam@127 108 if (i == n - i) {
cannam@127 109 O[os * (n - 1)] = W[n - 1] * buf[i];
cannam@127 110 }
cannam@127 111 }
cannam@127 112
cannam@127 113 X(ifree)(buf);
cannam@127 114 }
cannam@127 115
cannam@127 116 /* like for rodft01, rodft11 is obtained from redft11 by
cannam@127 117 reversing the input and flipping the sign of every other output. */
cannam@127 118 static void apply_ro11(const plan *ego_, R *I, R *O)
cannam@127 119 {
cannam@127 120 const P *ego = (const P *) ego_;
cannam@127 121 INT is = ego->is, os = ego->os;
cannam@127 122 INT i, n = ego->n;
cannam@127 123 INT iv, vl = ego->vl;
cannam@127 124 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 125 R *W;
cannam@127 126 R *buf;
cannam@127 127 E cur;
cannam@127 128
cannam@127 129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 130
cannam@127 131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 132 /* I wish that this didn't require an extra pass. */
cannam@127 133 /* FIXME: use recursive/cascade summation for better stability? */
cannam@127 134 buf[n - 1] = cur = K(2.0) * I[0];
cannam@127 135 for (i = n - 1; i > 0; --i) {
cannam@127 136 E curnew;
cannam@127 137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
cannam@127 138 cur = curnew;
cannam@127 139 }
cannam@127 140
cannam@127 141 W = ego->td->W;
cannam@127 142 for (i = 1; i < n - i; ++i) {
cannam@127 143 E a, b, apb, amb, wa, wb;
cannam@127 144 a = buf[i];
cannam@127 145 b = buf[n - i];
cannam@127 146 apb = a + b;
cannam@127 147 amb = a - b;
cannam@127 148 wa = W[2*i];
cannam@127 149 wb = W[2*i + 1];
cannam@127 150 buf[i] = wa * amb + wb * apb;
cannam@127 151 buf[n - i] = wa * apb - wb * amb;
cannam@127 152 }
cannam@127 153 if (i == n - i) {
cannam@127 154 buf[i] = K(2.0) * buf[i] * W[2*i];
cannam@127 155 }
cannam@127 156
cannam@127 157 {
cannam@127 158 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 159 cld->apply((plan *) cld, buf, buf);
cannam@127 160 }
cannam@127 161
cannam@127 162 W = ego->td2->W;
cannam@127 163 O[0] = W[0] * buf[0];
cannam@127 164 for (i = 1; i < n - i; ++i) {
cannam@127 165 E a, b;
cannam@127 166 INT k;
cannam@127 167 a = buf[i];
cannam@127 168 b = buf[n - i];
cannam@127 169 k = i + i;
cannam@127 170 O[os * (k - 1)] = W[k - 1] * (b - a);
cannam@127 171 O[os * k] = W[k] * (a + b);
cannam@127 172 }
cannam@127 173 if (i == n - i) {
cannam@127 174 O[os * (n - 1)] = -W[n - 1] * buf[i];
cannam@127 175 }
cannam@127 176 }
cannam@127 177
cannam@127 178 X(ifree)(buf);
cannam@127 179 }
cannam@127 180
cannam@127 181 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 182 {
cannam@127 183 P *ego = (P *) ego_;
cannam@127 184 static const tw_instr reodft010e_tw[] = {
cannam@127 185 { TW_COS, 0, 1 },
cannam@127 186 { TW_SIN, 0, 1 },
cannam@127 187 { TW_NEXT, 1, 0 }
cannam@127 188 };
cannam@127 189 static const tw_instr reodft11e_tw[] = {
cannam@127 190 { TW_COS, 1, 1 },
cannam@127 191 { TW_NEXT, 2, 0 }
cannam@127 192 };
cannam@127 193
cannam@127 194 X(plan_awake)(ego->cld, wakefulness);
cannam@127 195
cannam@127 196 X(twiddle_awake)(wakefulness,
cannam@127 197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
cannam@127 198 X(twiddle_awake)(wakefulness,
cannam@127 199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
cannam@127 200 }
cannam@127 201
cannam@127 202 static void destroy(plan *ego_)
cannam@127 203 {
cannam@127 204 P *ego = (P *) ego_;
cannam@127 205 X(plan_destroy_internal)(ego->cld);
cannam@127 206 }
cannam@127 207
cannam@127 208 static void print(const plan *ego_, printer *p)
cannam@127 209 {
cannam@127 210 const P *ego = (const P *) ego_;
cannam@127 211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
cannam@127 212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
cannam@127 213 }
cannam@127 214
cannam@127 215 static int applicable0(const solver *ego_, const problem *p_)
cannam@127 216 {
cannam@127 217 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 218
cannam@127 219 UNUSED(ego_);
cannam@127 220
cannam@127 221 return (1
cannam@127 222 && p->sz->rnk == 1
cannam@127 223 && p->vecsz->rnk <= 1
cannam@127 224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
cannam@127 225 );
cannam@127 226 }
cannam@127 227
cannam@127 228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@127 229 {
cannam@127 230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@127 231 }
cannam@127 232
cannam@127 233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 234 {
cannam@127 235 P *pln;
cannam@127 236 const problem_rdft *p;
cannam@127 237 plan *cld;
cannam@127 238 R *buf;
cannam@127 239 INT n;
cannam@127 240 opcnt ops;
cannam@127 241
cannam@127 242 static const plan_adt padt = {
cannam@127 243 X(rdft_solve), awake, print, destroy
cannam@127 244 };
cannam@127 245
cannam@127 246 if (!applicable(ego_, p_, plnr))
cannam@127 247 return (plan *)0;
cannam@127 248
cannam@127 249 p = (const problem_rdft *) p_;
cannam@127 250
cannam@127 251 n = p->sz->dims[0].n;
cannam@127 252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 253
cannam@127 254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
cannam@127 255 X(mktensor_0d)(),
cannam@127 256 buf, buf, R2HC));
cannam@127 257 X(ifree)(buf);
cannam@127 258 if (!cld)
cannam@127 259 return (plan *)0;
cannam@127 260
cannam@127 261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
cannam@127 262 pln->n = n;
cannam@127 263 pln->is = p->sz->dims[0].is;
cannam@127 264 pln->os = p->sz->dims[0].os;
cannam@127 265 pln->cld = cld;
cannam@127 266 pln->td = pln->td2 = 0;
cannam@127 267 pln->kind = p->kind[0];
cannam@127 268
cannam@127 269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@127 270
cannam@127 271 X(ops_zero)(&ops);
cannam@127 272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
cannam@127 273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
cannam@127 274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
cannam@127 275
cannam@127 276 X(ops_zero)(&pln->super.super.ops);
cannam@127 277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@127 278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@127 279
cannam@127 280 return &(pln->super.super);
cannam@127 281 }
cannam@127 282
cannam@127 283 /* constructor */
cannam@127 284 static solver *mksolver(void)
cannam@127 285 {
cannam@127 286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 287 S *slv = MKSOLVER(S, &sadt);
cannam@127 288 return &(slv->super);
cannam@127 289 }
cannam@127 290
cannam@127 291 void X(reodft11e_r2hc_register)(planner *p)
cannam@127 292 {
cannam@127 293 REGISTER_SOLVER(p, mksolver());
cannam@127 294 }