annotate src/fftw-3.3.5/reodft/reodft00e-splitradix.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2005 Matteo Frigo
cannam@127 3 * Copyright (c) 2005 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an
cannam@127 23 R{E,O}DFT00 problem and an RDFT problem of half the length.
cannam@127 24
cannam@127 25 This works by "logically" expanding the array to a real-even/odd DFT of
cannam@127 26 length 2n-/+2 and then applying the split-radix algorithm.
cannam@127 27
cannam@127 28 In this way, we can avoid having to pad to twice the length
cannam@127 29 (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1,
cannam@127 30 but don't incur the accuracy loss that the "ordinary" algorithm
cannam@127 31 sacrifices (ala redft00-r2hc.c).
cannam@127 32 */
cannam@127 33
cannam@127 34 #include "reodft.h"
cannam@127 35
cannam@127 36 typedef struct {
cannam@127 37 solver super;
cannam@127 38 } S;
cannam@127 39
cannam@127 40 typedef struct {
cannam@127 41 plan_rdft super;
cannam@127 42 plan *clde, *cldo;
cannam@127 43 twid *td;
cannam@127 44 INT is, os;
cannam@127 45 INT n;
cannam@127 46 INT vl;
cannam@127 47 INT ivs, ovs;
cannam@127 48 } P;
cannam@127 49
cannam@127 50 /* redft00 */
cannam@127 51 static void apply_e(const plan *ego_, R *I, R *O)
cannam@127 52 {
cannam@127 53 const P *ego = (const P *) ego_;
cannam@127 54 INT is = ego->is, os = ego->os;
cannam@127 55 INT i, j, n = ego->n + 1, n2 = (n-1)/2;
cannam@127 56 INT iv, vl = ego->vl;
cannam@127 57 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 58 R *W = ego->td->W - 2;
cannam@127 59 R *buf;
cannam@127 60
cannam@127 61 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
cannam@127 62
cannam@127 63 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 64 /* do size (n-1)/2 r2hc transform of odd-indexed elements
cannam@127 65 with stride 4, "wrapping around" end of array with even
cannam@127 66 boundary conditions */
cannam@127 67 for (j = 0, i = 1; i < n; i += 4)
cannam@127 68 buf[j++] = I[is * i];
cannam@127 69 for (i = 2*n-2-i; i > 0; i -= 4)
cannam@127 70 buf[j++] = I[is * i];
cannam@127 71 {
cannam@127 72 plan_rdft *cld = (plan_rdft *) ego->cldo;
cannam@127 73 cld->apply((plan *) cld, buf, buf);
cannam@127 74 }
cannam@127 75
cannam@127 76 /* do size (n+1)/2 redft00 of the even-indexed elements,
cannam@127 77 writing to O: */
cannam@127 78 {
cannam@127 79 plan_rdft *cld = (plan_rdft *) ego->clde;
cannam@127 80 cld->apply((plan *) cld, I, O);
cannam@127 81 }
cannam@127 82
cannam@127 83 /* combine the results with the twiddle factors to get output */
cannam@127 84 { /* DC element */
cannam@127 85 E b20 = O[0], b0 = K(2.0) * buf[0];
cannam@127 86 O[0] = b20 + b0;
cannam@127 87 O[2*(n2*os)] = b20 - b0;
cannam@127 88 /* O[n2*os] = O[n2*os]; */
cannam@127 89 }
cannam@127 90 for (i = 1; i < n2 - i; ++i) {
cannam@127 91 E ap, am, br, bi, wr, wi, wbr, wbi;
cannam@127 92 br = buf[i];
cannam@127 93 bi = buf[n2 - i];
cannam@127 94 wr = W[2*i];
cannam@127 95 wi = W[2*i+1];
cannam@127 96 #if FFT_SIGN == -1
cannam@127 97 wbr = K(2.0) * (wr*br + wi*bi);
cannam@127 98 wbi = K(2.0) * (wr*bi - wi*br);
cannam@127 99 #else
cannam@127 100 wbr = K(2.0) * (wr*br - wi*bi);
cannam@127 101 wbi = K(2.0) * (wr*bi + wi*br);
cannam@127 102 #endif
cannam@127 103 ap = O[i*os];
cannam@127 104 O[i*os] = ap + wbr;
cannam@127 105 O[(2*n2 - i)*os] = ap - wbr;
cannam@127 106 am = O[(n2 - i)*os];
cannam@127 107 #if FFT_SIGN == -1
cannam@127 108 O[(n2 - i)*os] = am - wbi;
cannam@127 109 O[(n2 + i)*os] = am + wbi;
cannam@127 110 #else
cannam@127 111 O[(n2 - i)*os] = am + wbi;
cannam@127 112 O[(n2 + i)*os] = am - wbi;
cannam@127 113 #endif
cannam@127 114 }
cannam@127 115 if (i == n2 - i) { /* Nyquist element */
cannam@127 116 E ap, wbr;
cannam@127 117 wbr = K(2.0) * (W[2*i] * buf[i]);
cannam@127 118 ap = O[i*os];
cannam@127 119 O[i*os] = ap + wbr;
cannam@127 120 O[(2*n2 - i)*os] = ap - wbr;
cannam@127 121 }
cannam@127 122 }
cannam@127 123
cannam@127 124 X(ifree)(buf);
cannam@127 125 }
cannam@127 126
cannam@127 127 /* rodft00 */
cannam@127 128 static void apply_o(const plan *ego_, R *I, R *O)
cannam@127 129 {
cannam@127 130 const P *ego = (const P *) ego_;
cannam@127 131 INT is = ego->is, os = ego->os;
cannam@127 132 INT i, j, n = ego->n - 1, n2 = (n+1)/2;
cannam@127 133 INT iv, vl = ego->vl;
cannam@127 134 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 135 R *W = ego->td->W - 2;
cannam@127 136 R *buf;
cannam@127 137
cannam@127 138 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
cannam@127 139
cannam@127 140 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 141 /* do size (n+1)/2 r2hc transform of even-indexed elements
cannam@127 142 with stride 4, "wrapping around" end of array with odd
cannam@127 143 boundary conditions */
cannam@127 144 for (j = 0, i = 0; i < n; i += 4)
cannam@127 145 buf[j++] = I[is * i];
cannam@127 146 for (i = 2*n-i; i > 0; i -= 4)
cannam@127 147 buf[j++] = -I[is * i];
cannam@127 148 {
cannam@127 149 plan_rdft *cld = (plan_rdft *) ego->cldo;
cannam@127 150 cld->apply((plan *) cld, buf, buf);
cannam@127 151 }
cannam@127 152
cannam@127 153 /* do size (n-1)/2 rodft00 of the odd-indexed elements,
cannam@127 154 writing to O: */
cannam@127 155 {
cannam@127 156 plan_rdft *cld = (plan_rdft *) ego->clde;
cannam@127 157 if (I == O) {
cannam@127 158 /* can't use I+is and I, subplan would lose in-placeness */
cannam@127 159 cld->apply((plan *) cld, I + is, I + is);
cannam@127 160 /* we could maybe avoid this copy by modifying the
cannam@127 161 twiddle loop, but currently I can't be bothered. */
cannam@127 162 A(is >= os);
cannam@127 163 for (i = 0; i < n2-1; ++i)
cannam@127 164 O[os*i] = I[is*(i+1)];
cannam@127 165 }
cannam@127 166 else
cannam@127 167 cld->apply((plan *) cld, I + is, O);
cannam@127 168 }
cannam@127 169
cannam@127 170 /* combine the results with the twiddle factors to get output */
cannam@127 171 O[(n2-1)*os] = K(2.0) * buf[0];
cannam@127 172 for (i = 1; i < n2 - i; ++i) {
cannam@127 173 E ap, am, br, bi, wr, wi, wbr, wbi;
cannam@127 174 br = buf[i];
cannam@127 175 bi = buf[n2 - i];
cannam@127 176 wr = W[2*i];
cannam@127 177 wi = W[2*i+1];
cannam@127 178 #if FFT_SIGN == -1
cannam@127 179 wbr = K(2.0) * (wr*br + wi*bi);
cannam@127 180 wbi = K(2.0) * (wi*br - wr*bi);
cannam@127 181 #else
cannam@127 182 wbr = K(2.0) * (wr*br - wi*bi);
cannam@127 183 wbi = K(2.0) * (wr*bi + wi*br);
cannam@127 184 #endif
cannam@127 185 ap = O[(i-1)*os];
cannam@127 186 O[(i-1)*os] = wbi + ap;
cannam@127 187 O[(2*n2-1 - i)*os] = wbi - ap;
cannam@127 188 am = O[(n2-1 - i)*os];
cannam@127 189 #if FFT_SIGN == -1
cannam@127 190 O[(n2-1 - i)*os] = wbr + am;
cannam@127 191 O[(n2-1 + i)*os] = wbr - am;
cannam@127 192 #else
cannam@127 193 O[(n2-1 - i)*os] = wbr + am;
cannam@127 194 O[(n2-1 + i)*os] = wbr - am;
cannam@127 195 #endif
cannam@127 196 }
cannam@127 197 if (i == n2 - i) { /* Nyquist element */
cannam@127 198 E ap, wbi;
cannam@127 199 wbi = K(2.0) * (W[2*i+1] * buf[i]);
cannam@127 200 ap = O[(i-1)*os];
cannam@127 201 O[(i-1)*os] = wbi + ap;
cannam@127 202 O[(2*n2-1 - i)*os] = wbi - ap;
cannam@127 203 }
cannam@127 204 }
cannam@127 205
cannam@127 206 X(ifree)(buf);
cannam@127 207 }
cannam@127 208
cannam@127 209 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 210 {
cannam@127 211 P *ego = (P *) ego_;
cannam@127 212 static const tw_instr reodft00e_tw[] = {
cannam@127 213 { TW_COS, 1, 1 },
cannam@127 214 { TW_SIN, 1, 1 },
cannam@127 215 { TW_NEXT, 1, 0 }
cannam@127 216 };
cannam@127 217
cannam@127 218 X(plan_awake)(ego->clde, wakefulness);
cannam@127 219 X(plan_awake)(ego->cldo, wakefulness);
cannam@127 220 X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw,
cannam@127 221 2*ego->n, 1, ego->n/4);
cannam@127 222 }
cannam@127 223
cannam@127 224 static void destroy(plan *ego_)
cannam@127 225 {
cannam@127 226 P *ego = (P *) ego_;
cannam@127 227 X(plan_destroy_internal)(ego->cldo);
cannam@127 228 X(plan_destroy_internal)(ego->clde);
cannam@127 229 }
cannam@127 230
cannam@127 231 static void print(const plan *ego_, printer *p)
cannam@127 232 {
cannam@127 233 const P *ego = (const P *) ego_;
cannam@127 234 if (ego->super.apply == apply_e)
cannam@127 235 p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))",
cannam@127 236 ego->n + 1, ego->vl, ego->clde, ego->cldo);
cannam@127 237 else
cannam@127 238 p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))",
cannam@127 239 ego->n - 1, ego->vl, ego->clde, ego->cldo);
cannam@127 240 }
cannam@127 241
cannam@127 242 static int applicable0(const solver *ego_, const problem *p_)
cannam@127 243 {
cannam@127 244 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 245 UNUSED(ego_);
cannam@127 246
cannam@127 247 return (1
cannam@127 248 && p->sz->rnk == 1
cannam@127 249 && p->vecsz->rnk <= 1
cannam@127 250 && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00)
cannam@127 251 && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */
cannam@127 252 && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */
cannam@127 253 && (p->I != p->O || p->vecsz->rnk == 0
cannam@127 254 || p->vecsz->dims[0].is == p->vecsz->dims[0].os)
cannam@127 255 && (p->kind[0] != RODFT00 || p->I != p->O ||
cannam@127 256 p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */
cannam@127 257 );
cannam@127 258 }
cannam@127 259
cannam@127 260 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@127 261 {
cannam@127 262 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@127 263 }
cannam@127 264
cannam@127 265 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 266 {
cannam@127 267 P *pln;
cannam@127 268 const problem_rdft *p;
cannam@127 269 plan *clde, *cldo;
cannam@127 270 R *buf;
cannam@127 271 INT n, n0;
cannam@127 272 opcnt ops;
cannam@127 273 int inplace_odd;
cannam@127 274
cannam@127 275 static const plan_adt padt = {
cannam@127 276 X(rdft_solve), awake, print, destroy
cannam@127 277 };
cannam@127 278
cannam@127 279 if (!applicable(ego_, p_, plnr))
cannam@127 280 return (plan *)0;
cannam@127 281
cannam@127 282 p = (const problem_rdft *) p_;
cannam@127 283
cannam@127 284 n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1);
cannam@127 285 A(n > 0 && n % 2 == 0);
cannam@127 286 buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS);
cannam@127 287
cannam@127 288 inplace_odd = p->kind[0]==RODFT00 && p->I == p->O;
cannam@127 289 clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
cannam@127 290 X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is,
cannam@127 291 inplace_odd ? p->sz->dims[0].is
cannam@127 292 : p->sz->dims[0].os),
cannam@127 293 X(mktensor_0d)(),
cannam@127 294 TAINT(p->I
cannam@127 295 + p->sz->dims[0].is * (p->kind[0]==RODFT00),
cannam@127 296 p->vecsz->rnk ? p->vecsz->dims[0].is : 0),
cannam@127 297 TAINT(p->O
cannam@127 298 + p->sz->dims[0].is * inplace_odd,
cannam@127 299 p->vecsz->rnk ? p->vecsz->dims[0].os : 0),
cannam@127 300 p->kind[0]));
cannam@127 301 if (!clde) {
cannam@127 302 X(ifree)(buf);
cannam@127 303 return (plan *)0;
cannam@127 304 }
cannam@127 305
cannam@127 306 cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
cannam@127 307 X(mktensor_1d)(n/2, 1, 1),
cannam@127 308 X(mktensor_0d)(),
cannam@127 309 buf, buf, R2HC));
cannam@127 310 X(ifree)(buf);
cannam@127 311 if (!cldo)
cannam@127 312 return (plan *)0;
cannam@127 313
cannam@127 314 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o);
cannam@127 315
cannam@127 316 pln->n = n;
cannam@127 317 pln->is = p->sz->dims[0].is;
cannam@127 318 pln->os = p->sz->dims[0].os;
cannam@127 319 pln->clde = clde;
cannam@127 320 pln->cldo = cldo;
cannam@127 321 pln->td = 0;
cannam@127 322
cannam@127 323 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@127 324
cannam@127 325 X(ops_zero)(&ops);
cannam@127 326 ops.other = n/2;
cannam@127 327 ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) +
cannam@127 328 (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
cannam@127 329 ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
cannam@127 330
cannam@127 331 /* tweak ops.other so that r2hc-pad is used for small sizes, which
cannam@127 332 seems to be a lot faster on my machine: */
cannam@127 333 ops.other += 256;
cannam@127 334
cannam@127 335 X(ops_zero)(&pln->super.super.ops);
cannam@127 336 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@127 337 X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops);
cannam@127 338 X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops);
cannam@127 339
cannam@127 340 return &(pln->super.super);
cannam@127 341 }
cannam@127 342
cannam@127 343 /* constructor */
cannam@127 344 static solver *mksolver(void)
cannam@127 345 {
cannam@127 346 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 347 S *slv = MKSOLVER(S, &sadt);
cannam@127 348 return &(slv->super);
cannam@127 349 }
cannam@127 350
cannam@127 351 void X(reodft00e_splitradix_register)(planner *p)
cannam@127 352 {
cannam@127 353 REGISTER_SOLVER(p, mksolver());
cannam@127 354 }