annotate src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_8.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:40 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 41 FP additions, 40 FP multiplications,
cannam@127 32 * (or, 23 additions, 22 multiplications, 18 fused multiply/add),
cannam@127 33 * 52 stack variables, 2 constants, and 16 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cfv.h"
cannam@127 36
cannam@127 37 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 41 {
cannam@127 42 INT m;
cannam@127 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 44 V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk;
cannam@127 45 V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD;
cannam@127 46 V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM;
cannam@127 47 V TB, TA, Tx, Tw;
cannam@127 48 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 49 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 50 Tb = LDW(&(W[0]));
cannam@127 51 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 52 Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 53 Ti = LDW(&(W[TWVL * 12]));
cannam@127 54 Tr = LDW(&(W[TWVL * 10]));
cannam@127 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 57 T3 = VFMACONJ(T2, T1);
cannam@127 58 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
cannam@127 59 T4 = LDW(&(W[TWVL * 6]));
cannam@127 60 T9 = LDW(&(W[TWVL * 8]));
cannam@127 61 Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
cannam@127 62 Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
cannam@127 63 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 64 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 65 Te = LDW(&(W[TWVL * 4]));
cannam@127 66 Tp = LDW(&(W[TWVL * 2]));
cannam@127 67 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
cannam@127 68 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
cannam@127 69 Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
cannam@127 70 Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
cannam@127 71 TC = VADD(T3, T7);
cannam@127 72 T8 = VSUB(T3, T7);
cannam@127 73 Td = VSUB(Ta, Tc);
cannam@127 74 TF = VADD(Tc, Ta);
cannam@127 75 Tm = VSUB(Th, Tl);
cannam@127 76 TG = VADD(Th, Tl);
cannam@127 77 TD = VADD(Tq, Ts);
cannam@127 78 Tt = VSUB(Tq, Ts);
cannam@127 79 Tu = VSUB(Tm, Td);
cannam@127 80 Tn = VADD(Td, Tm);
cannam@127 81 TH = VSUB(TF, TG);
cannam@127 82 TL = VADD(TF, TG);
cannam@127 83 TE = VSUB(TC, TD);
cannam@127 84 TK = VADD(TC, TD);
cannam@127 85 Tz = VFMA(LDK(KP707106781), Tu, Tt);
cannam@127 86 Tv = VFNMS(LDK(KP707106781), Tu, Tt);
cannam@127 87 Ty = VFNMS(LDK(KP707106781), Tn, T8);
cannam@127 88 To = VFMA(LDK(KP707106781), Tn, T8);
cannam@127 89 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
cannam@127 90 TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
cannam@127 91 TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
cannam@127 92 TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
cannam@127 93 TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
cannam@127 94 TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
cannam@127 95 Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
cannam@127 96 Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
cannam@127 97 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
cannam@127 98 ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
cannam@127 99 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@127 100 ST(&(Rp[0]), TM, ms, &(Rp[0]));
cannam@127 101 ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
cannam@127 102 ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
cannam@127 103 ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
cannam@127 104 ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
cannam@127 105 }
cannam@127 106 }
cannam@127 107 VLEAVE();
cannam@127 108 }
cannam@127 109
cannam@127 110 static const tw_instr twinstr[] = {
cannam@127 111 VTW(1, 1),
cannam@127 112 VTW(1, 2),
cannam@127 113 VTW(1, 3),
cannam@127 114 VTW(1, 4),
cannam@127 115 VTW(1, 5),
cannam@127 116 VTW(1, 6),
cannam@127 117 VTW(1, 7),
cannam@127 118 {TW_NEXT, VL, 0}
cannam@127 119 };
cannam@127 120
cannam@127 121 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} };
cannam@127 122
cannam@127 123 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
cannam@127 124 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
cannam@127 125 }
cannam@127 126 #else /* HAVE_FMA */
cannam@127 127
cannam@127 128 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
cannam@127 129
cannam@127 130 /*
cannam@127 131 * This function contains 41 FP additions, 23 FP multiplications,
cannam@127 132 * (or, 41 additions, 23 multiplications, 0 fused multiply/add),
cannam@127 133 * 57 stack variables, 3 constants, and 16 memory accesses
cannam@127 134 */
cannam@127 135 #include "hc2cfv.h"
cannam@127 136
cannam@127 137 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 138 {
cannam@127 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 140 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
cannam@127 141 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 142 {
cannam@127 143 INT m;
cannam@127 144 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 145 V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
cannam@127 146 V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
cannam@127 147 V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
cannam@127 148 V TL, TP, TH, TJ, TM, TR, TN, TQ;
cannam@127 149 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 150 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 151 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 152 T3 = VCONJ(T2);
cannam@127 153 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 154 T8 = VCONJ(T7);
cannam@127 155 T4 = VADD(T1, T3);
cannam@127 156 T5 = LDW(&(W[TWVL * 6]));
cannam@127 157 T9 = VZMULJ(T5, VADD(T6, T8));
cannam@127 158 Ta = VADD(T4, T9);
cannam@127 159 TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
cannam@127 160 Tn = LDW(&(W[0]));
cannam@127 161 To = VZMULIJ(Tn, VSUB(T3, T1));
cannam@127 162 Tp = LDW(&(W[TWVL * 8]));
cannam@127 163 Tq = VZMULIJ(Tp, VSUB(T8, T6));
cannam@127 164 Tr = VADD(To, Tq);
cannam@127 165 TF = VSUB(To, Tq);
cannam@127 166 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 167 Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 168 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 169 Te = VCONJ(Td);
cannam@127 170 Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 171 Tj = VCONJ(Ti);
cannam@127 172 Tb = LDW(&(W[TWVL * 2]));
cannam@127 173 Tf = VZMULJ(Tb, VADD(Tc, Te));
cannam@127 174 Tg = LDW(&(W[TWVL * 10]));
cannam@127 175 Tk = VZMULJ(Tg, VADD(Th, Tj));
cannam@127 176 Tl = VADD(Tf, Tk);
cannam@127 177 TK = VSUB(Tf, Tk);
cannam@127 178 Ts = LDW(&(W[TWVL * 4]));
cannam@127 179 Tt = VZMULIJ(Ts, VSUB(Te, Tc));
cannam@127 180 Tu = LDW(&(W[TWVL * 12]));
cannam@127 181 Tv = VZMULIJ(Tu, VSUB(Tj, Th));
cannam@127 182 Tw = VADD(Tt, Tv);
cannam@127 183 TG = VSUB(Tv, Tt);
cannam@127 184 Tm = VADD(Ta, Tl);
cannam@127 185 Tx = VADD(Tr, Tw);
cannam@127 186 Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
cannam@127 187 Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
cannam@127 188 ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
cannam@127 189 ST(&(Rp[0]), Tz, ms, &(Rp[0]));
cannam@127 190 TA = VSUB(Ta, Tl);
cannam@127 191 TB = VBYI(VSUB(Tw, Tr));
cannam@127 192 TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
cannam@127 193 TD = VMUL(LDK(KP500000000), VADD(TA, TB));
cannam@127 194 ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
cannam@127 195 ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
cannam@127 196 TH = VMUL(LDK(KP353553390), VADD(TF, TG));
cannam@127 197 TI = VADD(TE, TH);
cannam@127 198 TO = VSUB(TE, TH);
cannam@127 199 TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
cannam@127 200 TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
cannam@127 201 TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
cannam@127 202 TM = VCONJ(VSUB(TI, TL));
cannam@127 203 ST(&(Rm[0]), TM, -ms, &(Rm[0]));
cannam@127 204 TR = VADD(TO, TP);
cannam@127 205 ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
cannam@127 206 TN = VADD(TI, TL);
cannam@127 207 ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
cannam@127 208 TQ = VCONJ(VSUB(TO, TP));
cannam@127 209 ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
cannam@127 210 }
cannam@127 211 }
cannam@127 212 VLEAVE();
cannam@127 213 }
cannam@127 214
cannam@127 215 static const tw_instr twinstr[] = {
cannam@127 216 VTW(1, 1),
cannam@127 217 VTW(1, 2),
cannam@127 218 VTW(1, 3),
cannam@127 219 VTW(1, 4),
cannam@127 220 VTW(1, 5),
cannam@127 221 VTW(1, 6),
cannam@127 222 VTW(1, 7),
cannam@127 223 {TW_NEXT, VL, 0}
cannam@127 224 };
cannam@127 225
cannam@127 226 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} };
cannam@127 227
cannam@127 228 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
cannam@127 229 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
cannam@127 230 }
cannam@127 231 #endif /* HAVE_FMA */