annotate src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_12.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:40 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 71 FP additions, 66 FP multiplications,
cannam@127 32 * (or, 41 additions, 36 multiplications, 30 fused multiply/add),
cannam@127 33 * 86 stack variables, 2 constants, and 24 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cfv.h"
cannam@127 36
cannam@127 37 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 41 {
cannam@127 42 INT m;
cannam@127 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
cannam@127 44 V T3, T7, TH, TE, Th, TC, Tq, T11, TU, Tx, Tb, Tz, Tu, Tw, Tp;
cannam@127 45 V Tl, T9, Ta, T8, Ty, Tn, To, Tm, TG, T1, T2, Tt, T5, T6, T4;
cannam@127 46 V Tv, Tj, Tk, Ti, TD, Tf, Tg, Te, TB, TT, TF, TR, Tr;
cannam@127 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 49 Tt = LDW(&(W[0]));
cannam@127 50 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 51 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 52 T4 = LDW(&(W[TWVL * 6]));
cannam@127 53 Tv = LDW(&(W[TWVL * 8]));
cannam@127 54 Tn = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 55 To = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 56 T3 = VFMACONJ(T2, T1);
cannam@127 57 Tu = VZMULIJ(Tt, VFNMSCONJ(T2, T1));
cannam@127 58 Tm = LDW(&(W[TWVL * 2]));
cannam@127 59 TG = LDW(&(W[TWVL * 4]));
cannam@127 60 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
cannam@127 61 Tw = VZMULIJ(Tv, VFNMSCONJ(T6, T5));
cannam@127 62 Tj = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 63 Tk = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 64 Ti = LDW(&(W[TWVL * 18]));
cannam@127 65 TD = LDW(&(W[TWVL * 20]));
cannam@127 66 Tp = VZMULJ(Tm, VFMACONJ(To, Tn));
cannam@127 67 TH = VZMULIJ(TG, VFNMSCONJ(To, Tn));
cannam@127 68 Tf = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 69 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 70 Te = LDW(&(W[TWVL * 10]));
cannam@127 71 TB = LDW(&(W[TWVL * 12]));
cannam@127 72 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj));
cannam@127 73 TE = VZMULIJ(TD, VFNMSCONJ(Tk, Tj));
cannam@127 74 T9 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 75 Ta = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 76 T8 = LDW(&(W[TWVL * 14]));
cannam@127 77 Ty = LDW(&(W[TWVL * 16]));
cannam@127 78 Th = VZMULJ(Te, VFMACONJ(Tg, Tf));
cannam@127 79 TC = VZMULIJ(TB, VFNMSCONJ(Tg, Tf));
cannam@127 80 Tq = VADD(Tl, Tp);
cannam@127 81 T11 = VSUB(Tp, Tl);
cannam@127 82 TU = VSUB(Tu, Tw);
cannam@127 83 Tx = VADD(Tu, Tw);
cannam@127 84 Tb = VZMULJ(T8, VFMACONJ(Ta, T9));
cannam@127 85 Tz = VZMULIJ(Ty, VFNMSCONJ(Ta, T9));
cannam@127 86 TT = VSUB(TC, TE);
cannam@127 87 TF = VADD(TC, TE);
cannam@127 88 TR = VFNMS(LDK(KP500000000), Tq, Th);
cannam@127 89 Tr = VADD(Th, Tq);
cannam@127 90 {
cannam@127 91 V TX, TA, T1d, TV, TY, TI, T1e, T12, TQ, Td, T10, Tc, T1a, TN, TJ;
cannam@127 92 V T1j, T1f, T1b, TS, TM, Ts, T17, T13, TZ, T1i, T1c, T16, TW, TP, TO;
cannam@127 93 V TL, TK, T1k, T1l, T1h, T1g, T18, T19, T15, T14;
cannam@127 94 T10 = VSUB(Tb, T7);
cannam@127 95 Tc = VADD(T7, Tb);
cannam@127 96 TX = VFNMS(LDK(KP500000000), Tx, Tz);
cannam@127 97 TA = VADD(Tx, Tz);
cannam@127 98 T1d = VADD(TU, TT);
cannam@127 99 TV = VSUB(TT, TU);
cannam@127 100 TY = VFNMS(LDK(KP500000000), TF, TH);
cannam@127 101 TI = VADD(TF, TH);
cannam@127 102 T1e = VADD(T10, T11);
cannam@127 103 T12 = VSUB(T10, T11);
cannam@127 104 TQ = VFNMS(LDK(KP500000000), Tc, T3);
cannam@127 105 Td = VADD(T3, Tc);
cannam@127 106 T1a = VADD(TX, TY);
cannam@127 107 TZ = VSUB(TX, TY);
cannam@127 108 TN = VADD(TA, TI);
cannam@127 109 TJ = VSUB(TA, TI);
cannam@127 110 T1j = VMUL(LDK(KP866025403), VADD(T1d, T1e));
cannam@127 111 T1f = VMUL(LDK(KP866025403), VSUB(T1d, T1e));
cannam@127 112 T1b = VADD(TQ, TR);
cannam@127 113 TS = VSUB(TQ, TR);
cannam@127 114 TM = VADD(Td, Tr);
cannam@127 115 Ts = VSUB(Td, Tr);
cannam@127 116 T17 = VFMA(LDK(KP866025403), T12, TZ);
cannam@127 117 T13 = VFNMS(LDK(KP866025403), T12, TZ);
cannam@127 118 T1i = VSUB(T1b, T1a);
cannam@127 119 T1c = VADD(T1a, T1b);
cannam@127 120 T16 = VFNMS(LDK(KP866025403), TV, TS);
cannam@127 121 TW = VFMA(LDK(KP866025403), TV, TS);
cannam@127 122 TP = VCONJ(VMUL(LDK(KP500000000), VADD(TN, TM)));
cannam@127 123 TO = VMUL(LDK(KP500000000), VSUB(TM, TN));
cannam@127 124 TL = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TJ, Ts)));
cannam@127 125 TK = VMUL(LDK(KP500000000), VFMAI(TJ, Ts));
cannam@127 126 T1k = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1j, T1i)));
cannam@127 127 T1l = VMUL(LDK(KP500000000), VFMAI(T1j, T1i));
cannam@127 128 T1h = VMUL(LDK(KP500000000), VFMAI(T1f, T1c));
cannam@127 129 T1g = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1f, T1c)));
cannam@127 130 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
cannam@127 131 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
cannam@127 132 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, TW)));
cannam@127 133 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, TW));
cannam@127 134 ST(&(Rm[WS(rs, 5)]), TP, -ms, &(Rm[WS(rs, 1)]));
cannam@127 135 ST(&(Rp[0]), TO, ms, &(Rp[0]));
cannam@127 136 ST(&(Rm[WS(rs, 2)]), TL, -ms, &(Rm[0]));
cannam@127 137 ST(&(Rp[WS(rs, 3)]), TK, ms, &(Rp[WS(rs, 1)]));
cannam@127 138 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
cannam@127 139 ST(&(Rp[WS(rs, 4)]), T1l, ms, &(Rp[0]));
cannam@127 140 ST(&(Rp[WS(rs, 2)]), T1h, ms, &(Rp[0]));
cannam@127 141 ST(&(Rm[WS(rs, 1)]), T1g, -ms, &(Rm[WS(rs, 1)]));
cannam@127 142 ST(&(Rp[WS(rs, 5)]), T18, ms, &(Rp[WS(rs, 1)]));
cannam@127 143 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
cannam@127 144 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
cannam@127 145 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
cannam@127 146 }
cannam@127 147 }
cannam@127 148 }
cannam@127 149 VLEAVE();
cannam@127 150 }
cannam@127 151
cannam@127 152 static const tw_instr twinstr[] = {
cannam@127 153 VTW(1, 1),
cannam@127 154 VTW(1, 2),
cannam@127 155 VTW(1, 3),
cannam@127 156 VTW(1, 4),
cannam@127 157 VTW(1, 5),
cannam@127 158 VTW(1, 6),
cannam@127 159 VTW(1, 7),
cannam@127 160 VTW(1, 8),
cannam@127 161 VTW(1, 9),
cannam@127 162 VTW(1, 10),
cannam@127 163 VTW(1, 11),
cannam@127 164 {TW_NEXT, VL, 0}
cannam@127 165 };
cannam@127 166
cannam@127 167 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {41, 36, 30, 0} };
cannam@127 168
cannam@127 169 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
cannam@127 170 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
cannam@127 171 }
cannam@127 172 #else /* HAVE_FMA */
cannam@127 173
cannam@127 174 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dit -name hc2cfdftv_12 -include hc2cfv.h */
cannam@127 175
cannam@127 176 /*
cannam@127 177 * This function contains 71 FP additions, 41 FP multiplications,
cannam@127 178 * (or, 67 additions, 37 multiplications, 4 fused multiply/add),
cannam@127 179 * 58 stack variables, 4 constants, and 24 memory accesses
cannam@127 180 */
cannam@127 181 #include "hc2cfv.h"
cannam@127 182
cannam@127 183 static void hc2cfdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 184 {
cannam@127 185 DVK(KP433012701, +0.433012701892219323381861585376468091735701313);
cannam@127 186 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 187 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 188 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 189 {
cannam@127 190 INT m;
cannam@127 191 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
cannam@127 192 V TX, T13, T4, Tf, TZ, TD, TF, T17, TW, T14, Tw, Tl, T10, TL, TN;
cannam@127 193 V T16;
cannam@127 194 {
cannam@127 195 V T1, T3, TA, Tb, Td, Te, T9, TC, T2, Tz, Tc, Ta, T6, T8, T7;
cannam@127 196 V T5, TB, TE, Ti, Tk, TI, Ts, Tu, Tv, Tq, TK, Tj, TH, Tt, Tr;
cannam@127 197 V Tn, Tp, To, Tm, TJ, Th, TM;
cannam@127 198 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 199 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 200 T3 = VCONJ(T2);
cannam@127 201 Tz = LDW(&(W[0]));
cannam@127 202 TA = VZMULIJ(Tz, VSUB(T3, T1));
cannam@127 203 Tb = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 204 Tc = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 205 Td = VCONJ(Tc);
cannam@127 206 Ta = LDW(&(W[TWVL * 14]));
cannam@127 207 Te = VZMULJ(Ta, VADD(Tb, Td));
cannam@127 208 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 209 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 210 T8 = VCONJ(T7);
cannam@127 211 T5 = LDW(&(W[TWVL * 6]));
cannam@127 212 T9 = VZMULJ(T5, VADD(T6, T8));
cannam@127 213 TB = LDW(&(W[TWVL * 8]));
cannam@127 214 TC = VZMULIJ(TB, VSUB(T8, T6));
cannam@127 215 TX = VSUB(TC, TA);
cannam@127 216 T13 = VSUB(Te, T9);
cannam@127 217 T4 = VADD(T1, T3);
cannam@127 218 Tf = VADD(T9, Te);
cannam@127 219 TZ = VFNMS(LDK(KP250000000), Tf, VMUL(LDK(KP500000000), T4));
cannam@127 220 TD = VADD(TA, TC);
cannam@127 221 TE = LDW(&(W[TWVL * 16]));
cannam@127 222 TF = VZMULIJ(TE, VSUB(Td, Tb));
cannam@127 223 T17 = VFNMS(LDK(KP500000000), TD, TF);
cannam@127 224 Ti = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 225 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 226 Tk = VCONJ(Tj);
cannam@127 227 TH = LDW(&(W[TWVL * 12]));
cannam@127 228 TI = VZMULIJ(TH, VSUB(Tk, Ti));
cannam@127 229 Ts = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 230 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 231 Tu = VCONJ(Tt);
cannam@127 232 Tr = LDW(&(W[TWVL * 2]));
cannam@127 233 Tv = VZMULJ(Tr, VADD(Ts, Tu));
cannam@127 234 Tn = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 235 To = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 236 Tp = VCONJ(To);
cannam@127 237 Tm = LDW(&(W[TWVL * 18]));
cannam@127 238 Tq = VZMULJ(Tm, VADD(Tn, Tp));
cannam@127 239 TJ = LDW(&(W[TWVL * 20]));
cannam@127 240 TK = VZMULIJ(TJ, VSUB(Tp, Tn));
cannam@127 241 TW = VSUB(TK, TI);
cannam@127 242 T14 = VSUB(Tv, Tq);
cannam@127 243 Tw = VADD(Tq, Tv);
cannam@127 244 Th = LDW(&(W[TWVL * 10]));
cannam@127 245 Tl = VZMULJ(Th, VADD(Ti, Tk));
cannam@127 246 T10 = VFNMS(LDK(KP250000000), Tw, VMUL(LDK(KP500000000), Tl));
cannam@127 247 TL = VADD(TI, TK);
cannam@127 248 TM = LDW(&(W[TWVL * 4]));
cannam@127 249 TN = VZMULIJ(TM, VSUB(Tu, Ts));
cannam@127 250 T16 = VFNMS(LDK(KP500000000), TL, TN);
cannam@127 251 }
cannam@127 252 {
cannam@127 253 V Ty, TS, TP, TT, Tg, Tx, TG, TO, TQ, TV, TR, TU, T1i, T1o, T1l;
cannam@127 254 V T1p, T1g, T1h, T1j, T1k, T1m, T1r, T1n, T1q, T12, T1c, T19, T1d, TY, T11;
cannam@127 255 V T15, T18, T1a, T1f, T1b, T1e;
cannam@127 256 Tg = VADD(T4, Tf);
cannam@127 257 Tx = VADD(Tl, Tw);
cannam@127 258 Ty = VADD(Tg, Tx);
cannam@127 259 TS = VSUB(Tg, Tx);
cannam@127 260 TG = VADD(TD, TF);
cannam@127 261 TO = VADD(TL, TN);
cannam@127 262 TP = VADD(TG, TO);
cannam@127 263 TT = VBYI(VSUB(TO, TG));
cannam@127 264 TQ = VCONJ(VMUL(LDK(KP500000000), VSUB(Ty, TP)));
cannam@127 265 ST(&(Rm[WS(rs, 5)]), TQ, -ms, &(Rm[WS(rs, 1)]));
cannam@127 266 TV = VMUL(LDK(KP500000000), VADD(TS, TT));
cannam@127 267 ST(&(Rp[WS(rs, 3)]), TV, ms, &(Rp[WS(rs, 1)]));
cannam@127 268 TR = VMUL(LDK(KP500000000), VADD(Ty, TP));
cannam@127 269 ST(&(Rp[0]), TR, ms, &(Rp[0]));
cannam@127 270 TU = VCONJ(VMUL(LDK(KP500000000), VSUB(TS, TT)));
cannam@127 271 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
cannam@127 272 T1g = VADD(TX, TW);
cannam@127 273 T1h = VADD(T13, T14);
cannam@127 274 T1i = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(T1g, T1h))));
cannam@127 275 T1o = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VADD(T1g, T1h))));
cannam@127 276 T1j = VADD(TZ, T10);
cannam@127 277 T1k = VMUL(LDK(KP500000000), VADD(T17, T16));
cannam@127 278 T1l = VSUB(T1j, T1k);
cannam@127 279 T1p = VADD(T1j, T1k);
cannam@127 280 T1m = VADD(T1i, T1l);
cannam@127 281 ST(&(Rp[WS(rs, 2)]), T1m, ms, &(Rp[0]));
cannam@127 282 T1r = VCONJ(VSUB(T1p, T1o));
cannam@127 283 ST(&(Rm[WS(rs, 3)]), T1r, -ms, &(Rm[WS(rs, 1)]));
cannam@127 284 T1n = VCONJ(VSUB(T1l, T1i));
cannam@127 285 ST(&(Rm[WS(rs, 1)]), T1n, -ms, &(Rm[WS(rs, 1)]));
cannam@127 286 T1q = VADD(T1o, T1p);
cannam@127 287 ST(&(Rp[WS(rs, 4)]), T1q, ms, &(Rp[0]));
cannam@127 288 TY = VMUL(LDK(KP433012701), VSUB(TW, TX));
cannam@127 289 T11 = VSUB(TZ, T10);
cannam@127 290 T12 = VADD(TY, T11);
cannam@127 291 T1c = VSUB(T11, TY);
cannam@127 292 T15 = VMUL(LDK(KP866025403), VSUB(T13, T14));
cannam@127 293 T18 = VSUB(T16, T17);
cannam@127 294 T19 = VMUL(LDK(KP500000000), VBYI(VSUB(T15, T18)));
cannam@127 295 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T15, T18)));
cannam@127 296 T1a = VCONJ(VSUB(T12, T19));
cannam@127 297 ST(&(Rm[0]), T1a, -ms, &(Rm[0]));
cannam@127 298 T1f = VCONJ(VADD(T1c, T1d));
cannam@127 299 ST(&(Rm[WS(rs, 4)]), T1f, -ms, &(Rm[0]));
cannam@127 300 T1b = VADD(T12, T19);
cannam@127 301 ST(&(Rp[WS(rs, 1)]), T1b, ms, &(Rp[WS(rs, 1)]));
cannam@127 302 T1e = VSUB(T1c, T1d);
cannam@127 303 ST(&(Rp[WS(rs, 5)]), T1e, ms, &(Rp[WS(rs, 1)]));
cannam@127 304 }
cannam@127 305 }
cannam@127 306 }
cannam@127 307 VLEAVE();
cannam@127 308 }
cannam@127 309
cannam@127 310 static const tw_instr twinstr[] = {
cannam@127 311 VTW(1, 1),
cannam@127 312 VTW(1, 2),
cannam@127 313 VTW(1, 3),
cannam@127 314 VTW(1, 4),
cannam@127 315 VTW(1, 5),
cannam@127 316 VTW(1, 6),
cannam@127 317 VTW(1, 7),
cannam@127 318 VTW(1, 8),
cannam@127 319 VTW(1, 9),
cannam@127 320 VTW(1, 10),
cannam@127 321 VTW(1, 11),
cannam@127 322 {TW_NEXT, VL, 0}
cannam@127 323 };
cannam@127 324
cannam@127 325 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cfdftv_12"), twinstr, &GENUS, {67, 37, 4, 0} };
cannam@127 326
cannam@127 327 void XSIMD(codelet_hc2cfdftv_12) (planner *p) {
cannam@127 328 X(khc2c_register) (p, hc2cfdftv_12, &desc, HC2C_VIA_DFT);
cannam@127 329 }
cannam@127 330 #endif /* HAVE_FMA */