annotate src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_10.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:40 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 61 FP additions, 60 FP multiplications,
cannam@127 32 * (or, 33 additions, 32 multiplications, 28 fused multiply/add),
cannam@127 33 * 77 stack variables, 5 constants, and 20 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cfv.h"
cannam@127 36
cannam@127 37 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 43 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 44 {
cannam@127 45 INT m;
cannam@127 46 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@127 47 V T5, T6, Tw, Tr, Tc, Tj, Tl, Tm, Tk, Ts, Tg, Ty, T3, T4, T1;
cannam@127 48 V T2, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf, Td, Tx, Tn, Tt, Th, TQ;
cannam@127 49 V TT, Tz, T7, TR, To, Tu, TU;
cannam@127 50 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 51 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 52 Tv = LDW(&(W[0]));
cannam@127 53 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 54 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 55 Tq = LDW(&(W[TWVL * 6]));
cannam@127 56 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 57 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 58 T9 = LDW(&(W[TWVL * 2]));
cannam@127 59 Ti = LDW(&(W[TWVL * 4]));
cannam@127 60 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
cannam@127 61 Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 62 Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 63 Tr = VZMULJ(Tq, VFMACONJ(T6, T5));
cannam@127 64 Td = LDW(&(W[TWVL * 12]));
cannam@127 65 Tx = LDW(&(W[TWVL * 10]));
cannam@127 66 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
cannam@127 67 Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta));
cannam@127 68 Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 69 Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 70 Tk = LDW(&(W[TWVL * 14]));
cannam@127 71 Ts = LDW(&(W[TWVL * 16]));
cannam@127 72 Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te));
cannam@127 73 Ty = VZMULJ(Tx, VFMACONJ(Tf, Te));
cannam@127 74 T3 = VFMACONJ(T2, T1);
cannam@127 75 T4 = LDW(&(W[TWVL * 8]));
cannam@127 76 Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl));
cannam@127 77 Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl));
cannam@127 78 Th = VSUB(Tc, Tg);
cannam@127 79 TQ = VADD(Tc, Tg);
cannam@127 80 TT = VADD(Tw, Ty);
cannam@127 81 Tz = VSUB(Tw, Ty);
cannam@127 82 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
cannam@127 83 TR = VADD(Tj, Tn);
cannam@127 84 To = VSUB(Tj, Tn);
cannam@127 85 Tu = VSUB(Tr, Tt);
cannam@127 86 TU = VADD(Tr, Tt);
cannam@127 87 {
cannam@127 88 V TP, T8, TS, T11, Tp, TH, TA, TG, TV, T12, TE, TB, TM, TI, TZ;
cannam@127 89 V TW, T17, T13, TD, TC, TY, TX, TL, TF, T10, T16, TN, TO, TK, TJ;
cannam@127 90 V T18, T19, T15, T14;
cannam@127 91 TP = VADD(T3, T7);
cannam@127 92 T8 = VSUB(T3, T7);
cannam@127 93 TS = VADD(TQ, TR);
cannam@127 94 T11 = VSUB(TQ, TR);
cannam@127 95 Tp = VSUB(Th, To);
cannam@127 96 TH = VADD(Th, To);
cannam@127 97 TA = VSUB(Tu, Tz);
cannam@127 98 TG = VADD(Tz, Tu);
cannam@127 99 TV = VADD(TT, TU);
cannam@127 100 T12 = VSUB(TU, TT);
cannam@127 101 TE = VSUB(Tp, TA);
cannam@127 102 TB = VADD(Tp, TA);
cannam@127 103 TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH));
cannam@127 104 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG));
cannam@127 105 TZ = VSUB(TS, TV);
cannam@127 106 TW = VADD(TS, TV);
cannam@127 107 T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12));
cannam@127 108 T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11));
cannam@127 109 TD = VFNMS(LDK(KP250000000), TB, T8);
cannam@127 110 TC = VMUL(LDK(KP500000000), VADD(T8, TB));
cannam@127 111 TY = VFNMS(LDK(KP250000000), TW, TP);
cannam@127 112 TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW)));
cannam@127 113 TL = VFMA(LDK(KP559016994), TE, TD);
cannam@127 114 TF = VFNMS(LDK(KP559016994), TE, TD);
cannam@127 115 ST(&(Rp[0]), TC, ms, &(Rp[0]));
cannam@127 116 T10 = VFMA(LDK(KP559016994), TZ, TY);
cannam@127 117 T16 = VFNMS(LDK(KP559016994), TZ, TY);
cannam@127 118 ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0]));
cannam@127 119 TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL)));
cannam@127 120 TO = VMUL(LDK(KP500000000), VFMAI(TM, TL));
cannam@127 121 TK = VMUL(LDK(KP500000000), VFMAI(TI, TF));
cannam@127 122 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF)));
cannam@127 123 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
cannam@127 124 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
cannam@127 125 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10)));
cannam@127 126 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10));
cannam@127 127 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@127 128 ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0]));
cannam@127 129 ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0]));
cannam@127 130 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
cannam@127 131 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
cannam@127 132 ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0]));
cannam@127 133 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
cannam@127 134 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
cannam@127 135 }
cannam@127 136 }
cannam@127 137 }
cannam@127 138 VLEAVE();
cannam@127 139 }
cannam@127 140
cannam@127 141 static const tw_instr twinstr[] = {
cannam@127 142 VTW(1, 1),
cannam@127 143 VTW(1, 2),
cannam@127 144 VTW(1, 3),
cannam@127 145 VTW(1, 4),
cannam@127 146 VTW(1, 5),
cannam@127 147 VTW(1, 6),
cannam@127 148 VTW(1, 7),
cannam@127 149 VTW(1, 8),
cannam@127 150 VTW(1, 9),
cannam@127 151 {TW_NEXT, VL, 0}
cannam@127 152 };
cannam@127 153
cannam@127 154 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {33, 32, 28, 0} };
cannam@127 155
cannam@127 156 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
cannam@127 157 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
cannam@127 158 }
cannam@127 159 #else /* HAVE_FMA */
cannam@127 160
cannam@127 161 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
cannam@127 162
cannam@127 163 /*
cannam@127 164 * This function contains 61 FP additions, 38 FP multiplications,
cannam@127 165 * (or, 55 additions, 32 multiplications, 6 fused multiply/add),
cannam@127 166 * 82 stack variables, 5 constants, and 20 memory accesses
cannam@127 167 */
cannam@127 168 #include "hc2cfv.h"
cannam@127 169
cannam@127 170 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 171 {
cannam@127 172 DVK(KP125000000, +0.125000000000000000000000000000000000000000000);
cannam@127 173 DVK(KP279508497, +0.279508497187473712051146708591409529430077295);
cannam@127 174 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@127 175 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 176 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 177 {
cannam@127 178 INT m;
cannam@127 179 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@127 180 V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN;
cannam@127 181 V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c;
cannam@127 182 V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d;
cannam@127 183 {
cannam@127 184 V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6;
cannam@127 185 V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm;
cannam@127 186 V TC, T4, T9, T5;
cannam@127 187 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 188 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 189 T3 = VCONJ(T2);
cannam@127 190 Tx = LDW(&(W[0]));
cannam@127 191 Ty = VZMULIJ(Tx, VSUB(T3, T1));
cannam@127 192 T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 193 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 194 T7 = VCONJ(T6);
cannam@127 195 TA = LDW(&(W[TWVL * 6]));
cannam@127 196 TB = VZMULJ(TA, VADD(T7, T8));
cannam@127 197 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 198 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 199 Te = VCONJ(Td);
cannam@127 200 Tb = LDW(&(W[TWVL * 2]));
cannam@127 201 Tf = VZMULJ(Tb, VADD(Tc, Te));
cannam@127 202 Tr = LDW(&(W[TWVL * 4]));
cannam@127 203 Ts = VZMULIJ(Tr, VSUB(Te, Tc));
cannam@127 204 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 205 Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 206 Ti = VCONJ(Th);
cannam@127 207 Tg = LDW(&(W[TWVL * 12]));
cannam@127 208 Tk = VZMULIJ(Tg, VSUB(Ti, Tj));
cannam@127 209 Tv = LDW(&(W[TWVL * 10]));
cannam@127 210 Tw = VZMULJ(Tv, VADD(Ti, Tj));
cannam@127 211 Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 212 To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 213 Tp = VCONJ(To);
cannam@127 214 Tm = LDW(&(W[TWVL * 14]));
cannam@127 215 Tq = VZMULJ(Tm, VADD(Tn, Tp));
cannam@127 216 TC = LDW(&(W[TWVL * 16]));
cannam@127 217 TD = VZMULIJ(TC, VSUB(Tp, Tn));
cannam@127 218 Tl = VSUB(Tf, Tk);
cannam@127 219 Tt = VSUB(Tq, Ts);
cannam@127 220 Tu = VADD(Tl, Tt);
cannam@127 221 TY = VADD(Ty, Tw);
cannam@127 222 TZ = VADD(TB, TD);
cannam@127 223 T10 = VADD(TY, TZ);
cannam@127 224 Tz = VSUB(Tw, Ty);
cannam@127 225 TE = VSUB(TB, TD);
cannam@127 226 TF = VADD(Tz, TE);
cannam@127 227 TV = VADD(Tf, Tk);
cannam@127 228 TW = VADD(Ts, Tq);
cannam@127 229 TX = VADD(TV, TW);
cannam@127 230 T4 = VADD(T1, T3);
cannam@127 231 T5 = LDW(&(W[TWVL * 8]));
cannam@127 232 T9 = VZMULIJ(T5, VSUB(T7, T8));
cannam@127 233 Ta = VSUB(T4, T9);
cannam@127 234 TU = VADD(T4, T9);
cannam@127 235 }
cannam@127 236 TL = VSUB(Tl, Tt);
cannam@127 237 TM = VSUB(TE, Tz);
cannam@127 238 TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM))));
cannam@127 239 TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM))));
cannam@127 240 TI = VMUL(LDK(KP279508497), VSUB(Tu, TF));
cannam@127 241 TG = VADD(Tu, TF);
cannam@127 242 TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta));
cannam@127 243 TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG)));
cannam@127 244 TQ = VSUB(TJ, TI);
cannam@127 245 TK = VADD(TI, TJ);
cannam@127 246 ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0]));
cannam@127 247 TT = VCONJ(VADD(TQ, TR));
cannam@127 248 ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0]));
cannam@127 249 TO = VSUB(TK, TN);
cannam@127 250 ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)]));
cannam@127 251 TP = VCONJ(VADD(TK, TN));
cannam@127 252 ST(&(Rm[0]), TP, -ms, &(Rm[0]));
cannam@127 253 TS = VSUB(TQ, TR);
cannam@127 254 ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)]));
cannam@127 255 T16 = VSUB(TZ, TY);
cannam@127 256 T17 = VSUB(TV, TW);
cannam@127 257 T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16))));
cannam@127 258 T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16))));
cannam@127 259 T14 = VMUL(LDK(KP279508497), VSUB(TX, T10));
cannam@127 260 T11 = VADD(TX, T10);
cannam@127 261 T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU));
cannam@127 262 T12 = VMUL(LDK(KP500000000), VADD(TU, T11));
cannam@127 263 T1b = VADD(T14, T13);
cannam@127 264 T15 = VSUB(T13, T14);
cannam@127 265 ST(&(Rp[0]), T12, ms, &(Rp[0]));
cannam@127 266 T1e = VADD(T1b, T1c);
cannam@127 267 ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0]));
cannam@127 268 T19 = VCONJ(VSUB(T15, T18));
cannam@127 269 ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)]));
cannam@127 270 T1a = VADD(T15, T18);
cannam@127 271 ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0]));
cannam@127 272 T1d = VCONJ(VSUB(T1b, T1c));
cannam@127 273 ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)]));
cannam@127 274 }
cannam@127 275 }
cannam@127 276 VLEAVE();
cannam@127 277 }
cannam@127 278
cannam@127 279 static const tw_instr twinstr[] = {
cannam@127 280 VTW(1, 1),
cannam@127 281 VTW(1, 2),
cannam@127 282 VTW(1, 3),
cannam@127 283 VTW(1, 4),
cannam@127 284 VTW(1, 5),
cannam@127 285 VTW(1, 6),
cannam@127 286 VTW(1, 7),
cannam@127 287 VTW(1, 8),
cannam@127 288 VTW(1, 9),
cannam@127 289 {TW_NEXT, VL, 0}
cannam@127 290 };
cannam@127 291
cannam@127 292 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {55, 32, 6, 0} };
cannam@127 293
cannam@127 294 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
cannam@127 295 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
cannam@127 296 }
cannam@127 297 #endif /* HAVE_FMA */