annotate src/fftw-3.3.5/rdft/simd/common/hc2cbdftv_8.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:42 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 41 FP additions, 32 FP multiplications,
cannam@127 32 * (or, 23 additions, 14 multiplications, 18 fused multiply/add),
cannam@127 33 * 51 stack variables, 1 constants, and 16 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cbv.h"
cannam@127 36
cannam@127 37 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT m;
cannam@127 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 43 V TJ, T4, Tf, TB, TD, TE, Tm, T1, Tj, TF, Tp, Tb, Tg, Tt, Tx;
cannam@127 44 V T2, T3, Td, Te, T5, T6, T8, T9, Tn, T7, To, Ta, Tk, Tl, TG;
cannam@127 45 V TL, Tq, Tc, Tu, Th, Tv, Ty, Tw, TC, Ti, TK, TA, Tz, TI, TH;
cannam@127 46 V Ts, Tr, TN, TM;
cannam@127 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 48 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 49 Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 50 Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 51 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 52 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 53 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 54 T9 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 55 TJ = LDW(&(W[0]));
cannam@127 56 Tk = VFMACONJ(T3, T2);
cannam@127 57 T4 = VFNMSCONJ(T3, T2);
cannam@127 58 Tl = VFMACONJ(Te, Td);
cannam@127 59 Tf = VFNMSCONJ(Te, Td);
cannam@127 60 Tn = VFMACONJ(T6, T5);
cannam@127 61 T7 = VFNMSCONJ(T6, T5);
cannam@127 62 To = VFMACONJ(T9, T8);
cannam@127 63 Ta = VFMSCONJ(T9, T8);
cannam@127 64 TB = LDW(&(W[TWVL * 8]));
cannam@127 65 TD = LDW(&(W[TWVL * 6]));
cannam@127 66 TE = VADD(Tk, Tl);
cannam@127 67 Tm = VSUB(Tk, Tl);
cannam@127 68 T1 = LDW(&(W[TWVL * 12]));
cannam@127 69 Tj = LDW(&(W[TWVL * 10]));
cannam@127 70 TF = VADD(Tn, To);
cannam@127 71 Tp = VSUB(Tn, To);
cannam@127 72 Tb = VADD(T7, Ta);
cannam@127 73 Tg = VSUB(T7, Ta);
cannam@127 74 Tt = LDW(&(W[TWVL * 4]));
cannam@127 75 Tx = LDW(&(W[TWVL * 2]));
cannam@127 76 TG = VZMUL(TD, VSUB(TE, TF));
cannam@127 77 TL = VADD(TE, TF);
cannam@127 78 Tq = VZMUL(Tj, VFNMSI(Tp, Tm));
cannam@127 79 Tc = VFMA(LDK(KP707106781), Tb, T4);
cannam@127 80 Tu = VFNMS(LDK(KP707106781), Tb, T4);
cannam@127 81 Th = VFMA(LDK(KP707106781), Tg, Tf);
cannam@127 82 Tv = VFNMS(LDK(KP707106781), Tg, Tf);
cannam@127 83 Ty = VZMUL(Tx, VFMAI(Tp, Tm));
cannam@127 84 Tw = VZMULI(Tt, VFNMSI(Tv, Tu));
cannam@127 85 TC = VZMULI(TB, VFMAI(Tv, Tu));
cannam@127 86 Ti = VZMULI(T1, VFNMSI(Th, Tc));
cannam@127 87 TK = VZMULI(TJ, VFMAI(Th, Tc));
cannam@127 88 TA = VCONJ(VSUB(Ty, Tw));
cannam@127 89 Tz = VADD(Tw, Ty);
cannam@127 90 TI = VCONJ(VSUB(TG, TC));
cannam@127 91 TH = VADD(TC, TG);
cannam@127 92 Ts = VCONJ(VSUB(Tq, Ti));
cannam@127 93 Tr = VADD(Ti, Tq);
cannam@127 94 TN = VCONJ(VSUB(TL, TK));
cannam@127 95 TM = VADD(TK, TL);
cannam@127 96 ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)]));
cannam@127 97 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
cannam@127 98 ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0]));
cannam@127 99 ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0]));
cannam@127 100 ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)]));
cannam@127 101 ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)]));
cannam@127 102 ST(&(Rm[0]), TN, -ms, &(Rm[0]));
cannam@127 103 ST(&(Rp[0]), TM, ms, &(Rp[0]));
cannam@127 104 }
cannam@127 105 }
cannam@127 106 VLEAVE();
cannam@127 107 }
cannam@127 108
cannam@127 109 static const tw_instr twinstr[] = {
cannam@127 110 VTW(1, 1),
cannam@127 111 VTW(1, 2),
cannam@127 112 VTW(1, 3),
cannam@127 113 VTW(1, 4),
cannam@127 114 VTW(1, 5),
cannam@127 115 VTW(1, 6),
cannam@127 116 VTW(1, 7),
cannam@127 117 {TW_NEXT, VL, 0}
cannam@127 118 };
cannam@127 119
cannam@127 120 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {23, 14, 18, 0} };
cannam@127 121
cannam@127 122 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
cannam@127 123 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
cannam@127 124 }
cannam@127 125 #else /* HAVE_FMA */
cannam@127 126
cannam@127 127 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
cannam@127 128
cannam@127 129 /*
cannam@127 130 * This function contains 41 FP additions, 16 FP multiplications,
cannam@127 131 * (or, 41 additions, 16 multiplications, 0 fused multiply/add),
cannam@127 132 * 55 stack variables, 1 constants, and 16 memory accesses
cannam@127 133 */
cannam@127 134 #include "hc2cbv.h"
cannam@127 135
cannam@127 136 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 137 {
cannam@127 138 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 139 {
cannam@127 140 INT m;
cannam@127 141 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 142 V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To;
cannam@127 143 V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO;
cannam@127 144 V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH;
cannam@127 145 V Ty, Tz, Tx, TF, TD, TM, TE, TL;
cannam@127 146 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 147 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 148 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 149 T4 = VCONJ(T3);
cannam@127 150 Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 151 Ti = VCONJ(Th);
cannam@127 152 T5 = VSUB(T2, T4);
cannam@127 153 Tj = VSUB(Tg, Ti);
cannam@127 154 To = VADD(T2, T4);
cannam@127 155 Tp = VADD(Tg, Ti);
cannam@127 156 Tq = VSUB(To, Tp);
cannam@127 157 TI = VADD(To, Tp);
cannam@127 158 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 159 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 160 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 161 T8 = VCONJ(T7);
cannam@127 162 Ta = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 163 Tb = VCONJ(Ta);
cannam@127 164 T9 = VSUB(T6, T8);
cannam@127 165 Td = VSUB(Tb, Tc);
cannam@127 166 Te = VMUL(LDK(KP707106781), VADD(T9, Td));
cannam@127 167 Tk = VMUL(LDK(KP707106781), VSUB(T9, Td));
cannam@127 168 Tr = VADD(T6, T8);
cannam@127 169 Ts = VADD(Tb, Tc);
cannam@127 170 Tt = VBYI(VSUB(Tr, Ts));
cannam@127 171 TJ = VADD(Tr, Ts);
cannam@127 172 TP = VADD(TI, TJ);
cannam@127 173 Tn = LDW(&(W[TWVL * 10]));
cannam@127 174 Tu = VZMUL(Tn, VSUB(Tq, Tt));
cannam@127 175 Tf = VADD(T5, Te);
cannam@127 176 Tl = VBYI(VADD(Tj, Tk));
cannam@127 177 T1 = LDW(&(W[TWVL * 12]));
cannam@127 178 Tm = VZMULI(T1, VSUB(Tf, Tl));
cannam@127 179 TN = LDW(&(W[0]));
cannam@127 180 TO = VZMULI(TN, VADD(Tl, Tf));
cannam@127 181 Tv = VADD(Tm, Tu);
cannam@127 182 ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)]));
cannam@127 183 TR = VCONJ(VSUB(TP, TO));
cannam@127 184 ST(&(Rm[0]), TR, -ms, &(Rm[0]));
cannam@127 185 Tw = VCONJ(VSUB(Tu, Tm));
cannam@127 186 ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)]));
cannam@127 187 TQ = VADD(TO, TP);
cannam@127 188 ST(&(Rp[0]), TQ, ms, &(Rp[0]));
cannam@127 189 TB = LDW(&(W[TWVL * 2]));
cannam@127 190 TC = VZMUL(TB, VADD(Tq, Tt));
cannam@127 191 TH = LDW(&(W[TWVL * 6]));
cannam@127 192 TK = VZMUL(TH, VSUB(TI, TJ));
cannam@127 193 Ty = VBYI(VSUB(Tk, Tj));
cannam@127 194 Tz = VSUB(T5, Te);
cannam@127 195 Tx = LDW(&(W[TWVL * 4]));
cannam@127 196 TA = VZMULI(Tx, VADD(Ty, Tz));
cannam@127 197 TF = LDW(&(W[TWVL * 8]));
cannam@127 198 TG = VZMULI(TF, VSUB(Tz, Ty));
cannam@127 199 TD = VADD(TA, TC);
cannam@127 200 ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)]));
cannam@127 201 TM = VCONJ(VSUB(TK, TG));
cannam@127 202 ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0]));
cannam@127 203 TE = VCONJ(VSUB(TC, TA));
cannam@127 204 ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)]));
cannam@127 205 TL = VADD(TG, TK);
cannam@127 206 ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0]));
cannam@127 207 }
cannam@127 208 }
cannam@127 209 VLEAVE();
cannam@127 210 }
cannam@127 211
cannam@127 212 static const tw_instr twinstr[] = {
cannam@127 213 VTW(1, 1),
cannam@127 214 VTW(1, 2),
cannam@127 215 VTW(1, 3),
cannam@127 216 VTW(1, 4),
cannam@127 217 VTW(1, 5),
cannam@127 218 VTW(1, 6),
cannam@127 219 VTW(1, 7),
cannam@127 220 {TW_NEXT, VL, 0}
cannam@127 221 };
cannam@127 222
cannam@127 223 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {41, 16, 0, 0} };
cannam@127 224
cannam@127 225 void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
cannam@127 226 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
cannam@127 227 }
cannam@127 228 #endif /* HAVE_FMA */