annotate src/fftw-3.3.5/rdft/simd/common/hc2cbdftv_6.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:42 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 29 FP additions, 24 FP multiplications,
cannam@127 32 * (or, 17 additions, 12 multiplications, 12 fused multiply/add),
cannam@127 33 * 38 stack variables, 2 constants, and 12 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cbv.h"
cannam@127 36
cannam@127 37 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 41 {
cannam@127 42 INT m;
cannam@127 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@127 44 V Tv, Tn, Tr, Te, T4, Tg, Ta, Tf, T7, T1, Td, T2, T3, T8, T9;
cannam@127 45 V T5, T6, Th, Tj, Tb, Tp, Tx, Ti, Tc, To, Tk, Ts, Tq, Tw, Tm;
cannam@127 46 V Tl, Tu, Tt, Tz, Ty;
cannam@127 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 48 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 49 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 50 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 51 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 52 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 53 Tv = LDW(&(W[0]));
cannam@127 54 Tn = LDW(&(W[TWVL * 8]));
cannam@127 55 Tr = LDW(&(W[TWVL * 6]));
cannam@127 56 Te = VFMACONJ(T3, T2);
cannam@127 57 T4 = VFNMSCONJ(T3, T2);
cannam@127 58 Tg = VFMACONJ(T9, T8);
cannam@127 59 Ta = VFMSCONJ(T9, T8);
cannam@127 60 Tf = VFMACONJ(T6, T5);
cannam@127 61 T7 = VFNMSCONJ(T6, T5);
cannam@127 62 T1 = LDW(&(W[TWVL * 4]));
cannam@127 63 Td = LDW(&(W[TWVL * 2]));
cannam@127 64 Th = VADD(Tf, Tg);
cannam@127 65 Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg));
cannam@127 66 Tb = VADD(T7, Ta);
cannam@127 67 Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta));
cannam@127 68 Tx = VADD(Te, Th);
cannam@127 69 Ti = VFNMS(LDK(KP500000000), Th, Te);
cannam@127 70 Tc = VZMULI(T1, VADD(T4, Tb));
cannam@127 71 To = VFNMS(LDK(KP500000000), Tb, T4);
cannam@127 72 Tk = VZMUL(Td, VFNMSI(Tj, Ti));
cannam@127 73 Ts = VZMUL(Tr, VFMAI(Tj, Ti));
cannam@127 74 Tq = VZMULI(Tn, VFNMSI(Tp, To));
cannam@127 75 Tw = VZMULI(Tv, VFMAI(Tp, To));
cannam@127 76 Tm = VCONJ(VSUB(Tk, Tc));
cannam@127 77 Tl = VADD(Tc, Tk);
cannam@127 78 Tu = VCONJ(VSUB(Ts, Tq));
cannam@127 79 Tt = VADD(Tq, Ts);
cannam@127 80 Tz = VCONJ(VSUB(Tx, Tw));
cannam@127 81 Ty = VADD(Tw, Tx);
cannam@127 82 ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)]));
cannam@127 83 ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)]));
cannam@127 84 ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0]));
cannam@127 85 ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0]));
cannam@127 86 ST(&(Rm[0]), Tz, -ms, &(Rm[0]));
cannam@127 87 ST(&(Rp[0]), Ty, ms, &(Rp[0]));
cannam@127 88 }
cannam@127 89 }
cannam@127 90 VLEAVE();
cannam@127 91 }
cannam@127 92
cannam@127 93 static const tw_instr twinstr[] = {
cannam@127 94 VTW(1, 1),
cannam@127 95 VTW(1, 2),
cannam@127 96 VTW(1, 3),
cannam@127 97 VTW(1, 4),
cannam@127 98 VTW(1, 5),
cannam@127 99 {TW_NEXT, VL, 0}
cannam@127 100 };
cannam@127 101
cannam@127 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} };
cannam@127 103
cannam@127 104 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
cannam@127 105 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
cannam@127 106 }
cannam@127 107 #else /* HAVE_FMA */
cannam@127 108
cannam@127 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
cannam@127 110
cannam@127 111 /*
cannam@127 112 * This function contains 29 FP additions, 14 FP multiplications,
cannam@127 113 * (or, 27 additions, 12 multiplications, 2 fused multiply/add),
cannam@127 114 * 41 stack variables, 2 constants, and 12 memory accesses
cannam@127 115 */
cannam@127 116 #include "hc2cbv.h"
cannam@127 117
cannam@127 118 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 119 {
cannam@127 120 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 122 {
cannam@127 123 INT m;
cannam@127 124 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@127 125 V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta;
cannam@127 126 V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr;
cannam@127 127 V Tq, Ty, To, Tp, TC, TB, Tx, Tw;
cannam@127 128 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 129 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 130 T4 = VCONJ(T3);
cannam@127 131 T5 = VSUB(T2, T4);
cannam@127 132 Th = VADD(T2, T4);
cannam@127 133 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 134 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 135 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 136 T8 = VCONJ(T7);
cannam@127 137 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 138 Tb = VCONJ(Ta);
cannam@127 139 T9 = VSUB(T6, T8);
cannam@127 140 Td = VSUB(Tb, Tc);
cannam@127 141 Te = VADD(T9, Td);
cannam@127 142 Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td)));
cannam@127 143 Ti = VADD(T6, T8);
cannam@127 144 Tj = VADD(Tb, Tc);
cannam@127 145 Tk = VADD(Ti, Tj);
cannam@127 146 Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj)));
cannam@127 147 TA = VADD(Th, Tk);
cannam@127 148 T1 = LDW(&(W[TWVL * 4]));
cannam@127 149 Tf = VZMULI(T1, VADD(T5, Te));
cannam@127 150 Tl = VFNMS(LDK(KP500000000), Tk, Th);
cannam@127 151 Tg = LDW(&(W[TWVL * 2]));
cannam@127 152 Tn = VZMUL(Tg, VSUB(Tl, Tm));
cannam@127 153 Tu = LDW(&(W[TWVL * 6]));
cannam@127 154 Tv = VZMUL(Tu, VADD(Tm, Tl));
cannam@127 155 Tr = VFNMS(LDK(KP500000000), Te, T5);
cannam@127 156 Tq = LDW(&(W[TWVL * 8]));
cannam@127 157 Tt = VZMULI(Tq, VSUB(Tr, Ts));
cannam@127 158 Ty = LDW(&(W[0]));
cannam@127 159 Tz = VZMULI(Ty, VADD(Ts, Tr));
cannam@127 160 To = VADD(Tf, Tn);
cannam@127 161 ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)]));
cannam@127 162 Tp = VCONJ(VSUB(Tn, Tf));
cannam@127 163 ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)]));
cannam@127 164 TC = VCONJ(VSUB(TA, Tz));
cannam@127 165 ST(&(Rm[0]), TC, -ms, &(Rm[0]));
cannam@127 166 TB = VADD(Tz, TA);
cannam@127 167 ST(&(Rp[0]), TB, ms, &(Rp[0]));
cannam@127 168 Tx = VCONJ(VSUB(Tv, Tt));
cannam@127 169 ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0]));
cannam@127 170 Tw = VADD(Tt, Tv);
cannam@127 171 ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0]));
cannam@127 172 }
cannam@127 173 }
cannam@127 174 VLEAVE();
cannam@127 175 }
cannam@127 176
cannam@127 177 static const tw_instr twinstr[] = {
cannam@127 178 VTW(1, 1),
cannam@127 179 VTW(1, 2),
cannam@127 180 VTW(1, 3),
cannam@127 181 VTW(1, 4),
cannam@127 182 VTW(1, 5),
cannam@127 183 {TW_NEXT, VL, 0}
cannam@127 184 };
cannam@127 185
cannam@127 186 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} };
cannam@127 187
cannam@127 188 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
cannam@127 189 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
cannam@127 190 }
cannam@127 191 #endif /* HAVE_FMA */