annotate src/fftw-3.3.5/rdft/simd/common/hc2cbdftv_10.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:43 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 61 FP additions, 50 FP multiplications,
cannam@127 32 * (or, 33 additions, 22 multiplications, 28 fused multiply/add),
cannam@127 33 * 76 stack variables, 4 constants, and 20 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cbv.h"
cannam@127 36
cannam@127 37 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 43 {
cannam@127 44 INT m;
cannam@127 45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@127 46 V Ts, T4, TR, T1, TZ, TD, Ty, Tn, Ti, TT, T11, TJ, T15, Tr, TN;
cannam@127 47 V TE, Tv, To, Tb, T8, Tw, Te, Tx, Th, Tt, T7, T9, T2, T3, Tc;
cannam@127 48 V Td, Tf, Tg, T5, T6, Tu, Ta;
cannam@127 49 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 50 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 51 Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 52 Td = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 53 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 54 Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 57 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 58 Ts = VFMACONJ(T3, T2);
cannam@127 59 T4 = VFNMSCONJ(T3, T2);
cannam@127 60 Tw = VFMACONJ(Td, Tc);
cannam@127 61 Te = VFNMSCONJ(Td, Tc);
cannam@127 62 Tx = VFMACONJ(Tg, Tf);
cannam@127 63 Th = VFMSCONJ(Tg, Tf);
cannam@127 64 Tt = VFMACONJ(T6, T5);
cannam@127 65 T7 = VFNMSCONJ(T6, T5);
cannam@127 66 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 67 TR = LDW(&(W[TWVL * 8]));
cannam@127 68 T1 = LDW(&(W[TWVL * 4]));
cannam@127 69 TZ = LDW(&(W[TWVL * 12]));
cannam@127 70 TD = VSUB(Tw, Tx);
cannam@127 71 Ty = VADD(Tw, Tx);
cannam@127 72 Tn = VSUB(Te, Th);
cannam@127 73 Ti = VADD(Te, Th);
cannam@127 74 Tu = VFMACONJ(T9, T8);
cannam@127 75 Ta = VFMSCONJ(T9, T8);
cannam@127 76 TT = LDW(&(W[TWVL * 6]));
cannam@127 77 T11 = LDW(&(W[TWVL * 10]));
cannam@127 78 TJ = LDW(&(W[TWVL * 16]));
cannam@127 79 T15 = LDW(&(W[0]));
cannam@127 80 Tr = LDW(&(W[TWVL * 2]));
cannam@127 81 TN = LDW(&(W[TWVL * 14]));
cannam@127 82 TE = VSUB(Tt, Tu);
cannam@127 83 Tv = VADD(Tt, Tu);
cannam@127 84 To = VSUB(T7, Ta);
cannam@127 85 Tb = VADD(T7, Ta);
cannam@127 86 {
cannam@127 87 V TV, TF, Tz, TB, TL, Tp, Tj, Tl, T17, TA, TS, Tk, TC, TU, TK;
cannam@127 88 V Tm, TO, TG, T12, TW, T16, TM, T10, Tq, TX, TY, T18, T19, TQ, TP;
cannam@127 89 V T13, T14, TI, TH;
cannam@127 90 TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE));
cannam@127 91 TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD));
cannam@127 92 Tz = VADD(Tv, Ty);
cannam@127 93 TB = VSUB(Tv, Ty);
cannam@127 94 TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To));
cannam@127 95 Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn));
cannam@127 96 Tj = VADD(Tb, Ti);
cannam@127 97 Tl = VSUB(Tb, Ti);
cannam@127 98 T17 = VADD(Ts, Tz);
cannam@127 99 TA = VFNMS(LDK(KP250000000), Tz, Ts);
cannam@127 100 TS = VZMULI(TR, VADD(T4, Tj));
cannam@127 101 Tk = VFNMS(LDK(KP250000000), Tj, T4);
cannam@127 102 TC = VFNMS(LDK(KP559016994), TB, TA);
cannam@127 103 TU = VFMA(LDK(KP559016994), TB, TA);
cannam@127 104 TK = VFMA(LDK(KP559016994), Tl, Tk);
cannam@127 105 Tm = VFNMS(LDK(KP559016994), Tl, Tk);
cannam@127 106 TO = VZMUL(TN, VFMAI(TF, TC));
cannam@127 107 TG = VZMUL(Tr, VFNMSI(TF, TC));
cannam@127 108 T12 = VZMUL(T11, VFMAI(TV, TU));
cannam@127 109 TW = VZMUL(TT, VFNMSI(TV, TU));
cannam@127 110 T16 = VZMULI(T15, VFMAI(TL, TK));
cannam@127 111 TM = VZMULI(TJ, VFNMSI(TL, TK));
cannam@127 112 T10 = VZMULI(TZ, VFNMSI(Tp, Tm));
cannam@127 113 Tq = VZMULI(T1, VFMAI(Tp, Tm));
cannam@127 114 TX = VADD(TS, TW);
cannam@127 115 TY = VCONJ(VSUB(TW, TS));
cannam@127 116 T18 = VADD(T16, T17);
cannam@127 117 T19 = VCONJ(VSUB(T17, T16));
cannam@127 118 TQ = VCONJ(VSUB(TO, TM));
cannam@127 119 TP = VADD(TM, TO);
cannam@127 120 T13 = VADD(T10, T12);
cannam@127 121 T14 = VCONJ(VSUB(T12, T10));
cannam@127 122 TI = VCONJ(VSUB(TG, Tq));
cannam@127 123 TH = VADD(Tq, TG);
cannam@127 124 ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0]));
cannam@127 125 ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0]));
cannam@127 126 ST(&(Rp[0]), T18, ms, &(Rp[0]));
cannam@127 127 ST(&(Rm[0]), T19, -ms, &(Rm[0]));
cannam@127 128 ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0]));
cannam@127 129 ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0]));
cannam@127 130 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
cannam@127 131 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
cannam@127 132 ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)]));
cannam@127 133 ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)]));
cannam@127 134 }
cannam@127 135 }
cannam@127 136 }
cannam@127 137 VLEAVE();
cannam@127 138 }
cannam@127 139
cannam@127 140 static const tw_instr twinstr[] = {
cannam@127 141 VTW(1, 1),
cannam@127 142 VTW(1, 2),
cannam@127 143 VTW(1, 3),
cannam@127 144 VTW(1, 4),
cannam@127 145 VTW(1, 5),
cannam@127 146 VTW(1, 6),
cannam@127 147 VTW(1, 7),
cannam@127 148 VTW(1, 8),
cannam@127 149 VTW(1, 9),
cannam@127 150 {TW_NEXT, VL, 0}
cannam@127 151 };
cannam@127 152
cannam@127 153 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {33, 22, 28, 0} };
cannam@127 154
cannam@127 155 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
cannam@127 156 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
cannam@127 157 }
cannam@127 158 #else /* HAVE_FMA */
cannam@127 159
cannam@127 160 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
cannam@127 161
cannam@127 162 /*
cannam@127 163 * This function contains 61 FP additions, 30 FP multiplications,
cannam@127 164 * (or, 55 additions, 24 multiplications, 6 fused multiply/add),
cannam@127 165 * 81 stack variables, 4 constants, and 20 memory accesses
cannam@127 166 */
cannam@127 167 #include "hc2cbv.h"
cannam@127 168
cannam@127 169 static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 170 {
cannam@127 171 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 173 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@127 174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 175 {
cannam@127 176 INT m;
cannam@127 177 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@127 178 V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx;
cannam@127 179 V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta;
cannam@127 180 V Tf, Th, Tg, TF, TG, Te, Tn;
cannam@127 181 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 182 T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 183 T4 = VCONJ(T3);
cannam@127 184 T5 = VSUB(T2, T4);
cannam@127 185 TE = VADD(T2, T4);
cannam@127 186 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 187 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 188 T8 = VCONJ(T7);
cannam@127 189 T9 = VSUB(T6, T8);
cannam@127 190 Tx = VADD(T6, T8);
cannam@127 191 Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 192 Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 193 Tk = VCONJ(Tj);
cannam@127 194 Tm = VSUB(Tk, Tl);
cannam@127 195 TB = VADD(Tk, Tl);
cannam@127 196 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 197 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 198 Tb = VCONJ(Ta);
cannam@127 199 Td = VSUB(Tb, Tc);
cannam@127 200 Ty = VADD(Tb, Tc);
cannam@127 201 Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 202 Tg = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 203 Th = VCONJ(Tg);
cannam@127 204 Ti = VSUB(Tf, Th);
cannam@127 205 TA = VADD(Tf, Th);
cannam@127 206 Ts = VSUB(T9, Td);
cannam@127 207 Tt = VSUB(Ti, Tm);
cannam@127 208 TC = VSUB(TA, TB);
cannam@127 209 Tz = VSUB(Tx, Ty);
cannam@127 210 TF = VADD(Tx, Ty);
cannam@127 211 TG = VADD(TA, TB);
cannam@127 212 TH = VADD(TF, TG);
cannam@127 213 TJ = VMUL(LDK(KP559016994), VSUB(TF, TG));
cannam@127 214 Te = VADD(T9, Td);
cannam@127 215 Tn = VADD(Ti, Tm);
cannam@127 216 To = VADD(Te, Tn);
cannam@127 217 Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
cannam@127 218 {
cannam@127 219 V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP;
cannam@127 220 V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM;
cannam@127 221 V TU, T1e, TN, T1d, T19, T13, TV, T18, T12;
cannam@127 222 T1c = VADD(TE, TH);
cannam@127 223 TW = LDW(&(W[TWVL * 8]));
cannam@127 224 TX = VZMULI(TW, VADD(T5, To));
cannam@127 225 Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts)));
cannam@127 226 TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt)));
cannam@127 227 Tp = VFNMS(LDK(KP250000000), To, T5);
cannam@127 228 Tr = VSUB(Tp, Tq);
cannam@127 229 TP = VADD(Tq, Tp);
cannam@127 230 T1 = LDW(&(W[TWVL * 4]));
cannam@127 231 Tv = VZMULI(T1, VSUB(Tr, Tu));
cannam@127 232 T1a = LDW(&(W[0]));
cannam@127 233 T1b = VZMULI(T1a, VADD(TQ, TP));
cannam@127 234 TO = LDW(&(W[TWVL * 16]));
cannam@127 235 TR = VZMULI(TO, VSUB(TP, TQ));
cannam@127 236 T14 = LDW(&(W[TWVL * 12]));
cannam@127 237 T15 = VZMULI(T14, VADD(Tu, Tr));
cannam@127 238 TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz)));
cannam@127 239 T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC)));
cannam@127 240 TI = VFNMS(LDK(KP250000000), TH, TE);
cannam@127 241 TK = VSUB(TI, TJ);
cannam@127 242 TZ = VADD(TJ, TI);
cannam@127 243 Tw = LDW(&(W[TWVL * 2]));
cannam@127 244 TL = VZMUL(Tw, VADD(TD, TK));
cannam@127 245 T16 = LDW(&(W[TWVL * 10]));
cannam@127 246 T17 = VZMUL(T16, VADD(T10, TZ));
cannam@127 247 TS = LDW(&(W[TWVL * 14]));
cannam@127 248 TT = VZMUL(TS, VSUB(TK, TD));
cannam@127 249 TY = LDW(&(W[TWVL * 6]));
cannam@127 250 T11 = VZMUL(TY, VSUB(TZ, T10));
cannam@127 251 TM = VADD(Tv, TL);
cannam@127 252 ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)]));
cannam@127 253 TU = VADD(TR, TT);
cannam@127 254 ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0]));
cannam@127 255 T1e = VCONJ(VSUB(T1c, T1b));
cannam@127 256 ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
cannam@127 257 TN = VCONJ(VSUB(TL, Tv));
cannam@127 258 ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@127 259 T1d = VADD(T1b, T1c);
cannam@127 260 ST(&(Rp[0]), T1d, ms, &(Rp[0]));
cannam@127 261 T19 = VCONJ(VSUB(T17, T15));
cannam@127 262 ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)]));
cannam@127 263 T13 = VCONJ(VSUB(T11, TX));
cannam@127 264 ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0]));
cannam@127 265 TV = VCONJ(VSUB(TT, TR));
cannam@127 266 ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0]));
cannam@127 267 T18 = VADD(T15, T17);
cannam@127 268 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
cannam@127 269 T12 = VADD(TX, T11);
cannam@127 270 ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0]));
cannam@127 271 }
cannam@127 272 }
cannam@127 273 }
cannam@127 274 VLEAVE();
cannam@127 275 }
cannam@127 276
cannam@127 277 static const tw_instr twinstr[] = {
cannam@127 278 VTW(1, 1),
cannam@127 279 VTW(1, 2),
cannam@127 280 VTW(1, 3),
cannam@127 281 VTW(1, 4),
cannam@127 282 VTW(1, 5),
cannam@127 283 VTW(1, 6),
cannam@127 284 VTW(1, 7),
cannam@127 285 VTW(1, 8),
cannam@127 286 VTW(1, 9),
cannam@127 287 {TW_NEXT, VL, 0}
cannam@127 288 };
cannam@127 289
cannam@127 290 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {55, 24, 6, 0} };
cannam@127 291
cannam@127 292 void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
cannam@127 293 X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
cannam@127 294 }
cannam@127 295 #endif /* HAVE_FMA */