annotate src/fftw-3.3.5/rdft/scalar/r2cf/r2cf_9.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:46:03 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 38 FP additions, 30 FP multiplications,
cannam@127 32 * (or, 12 additions, 4 multiplications, 26 fused multiply/add),
cannam@127 33 * 57 stack variables, 18 constants, and 18 memory accesses
cannam@127 34 */
cannam@127 35 #include "r2cf.h"
cannam@127 36
cannam@127 37 static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DK(KP907603734, +0.907603734547952313649323976213898122064543220);
cannam@127 40 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
cannam@127 41 DK(KP347296355, +0.347296355333860697703433253538629592000751354);
cannam@127 42 DK(KP666666666, +0.666666666666666666666666666666666666666666667);
cannam@127 43 DK(KP879385241, +0.879385241571816768108218554649462939872416269);
cannam@127 44 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
cannam@127 45 DK(KP673648177, +0.673648177666930348851716626769314796000375677);
cannam@127 46 DK(KP898197570, +0.898197570222573798468955502359086394667167570);
cannam@127 47 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
cannam@127 48 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 49 DK(KP203604859, +0.203604859554852403062088995281827210665664861);
cannam@127 50 DK(KP152703644, +0.152703644666139302296566746461370407999248646);
cannam@127 51 DK(KP394930843, +0.394930843634698457567117349190734585290304520);
cannam@127 52 DK(KP968908795, +0.968908795874236621082202410917456709164223497);
cannam@127 53 DK(KP726681596, +0.726681596905677465811651808188092531873167623);
cannam@127 54 DK(KP586256827, +0.586256827714544512072145703099641959914944179);
cannam@127 55 DK(KP184792530, +0.184792530904095372701352047572203755870913560);
cannam@127 56 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 57 {
cannam@127 58 INT i;
cannam@127 59 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
cannam@127 60 E Tp, Tz, Tw, Ts, TA;
cannam@127 61 {
cannam@127 62 E T1, T6, Tb, T7, T4, To, T8, Tc, Td, T2, T3;
cannam@127 63 T1 = R0[0];
cannam@127 64 T2 = R1[WS(rs, 1)];
cannam@127 65 T3 = R0[WS(rs, 3)];
cannam@127 66 T6 = R1[0];
cannam@127 67 Tb = R0[WS(rs, 1)];
cannam@127 68 T7 = R0[WS(rs, 2)];
cannam@127 69 T4 = T2 + T3;
cannam@127 70 To = T3 - T2;
cannam@127 71 T8 = R1[WS(rs, 3)];
cannam@127 72 Tc = R1[WS(rs, 2)];
cannam@127 73 Td = R0[WS(rs, 4)];
cannam@127 74 {
cannam@127 75 E T5, T9, Tk, Te, Ti;
cannam@127 76 T5 = T1 + T4;
cannam@127 77 Tp = FNMS(KP500000000, T4, T1);
cannam@127 78 T9 = T7 + T8;
cannam@127 79 Tk = T7 - T8;
cannam@127 80 Te = Tc + Td;
cannam@127 81 Ti = Td - Tc;
cannam@127 82 {
cannam@127 83 E Tl, Ta, Tu, Tf, Th;
cannam@127 84 Tl = FMS(KP500000000, T9, T6);
cannam@127 85 Ta = T6 + T9;
cannam@127 86 Tu = FMA(KP184792530, Tk, Ti);
cannam@127 87 Tf = Tb + Te;
cannam@127 88 Th = FNMS(KP500000000, Te, Tb);
cannam@127 89 {
cannam@127 90 E Tq, Ty, Tm, Tt;
cannam@127 91 Tq = FMA(KP586256827, Tl, Ti);
cannam@127 92 Ty = FMA(KP726681596, Tk, Tl);
cannam@127 93 Tm = FNMS(KP968908795, Tl, Tk);
cannam@127 94 Tt = FMA(KP394930843, Th, To);
cannam@127 95 {
cannam@127 96 E Tj, Tx, Tg, Tv;
cannam@127 97 Tj = FNMS(KP152703644, Ti, Th);
cannam@127 98 Tx = FMA(KP203604859, Th, Ti);
cannam@127 99 Tg = Ta + Tf;
cannam@127 100 Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
cannam@127 101 Tv = FNMS(KP939692620, Tu, Tt);
cannam@127 102 {
cannam@127 103 E TB, Tn, TC, Tr;
cannam@127 104 TB = FMA(KP898197570, Ty, Tx);
cannam@127 105 Tz = FNMS(KP898197570, Ty, Tx);
cannam@127 106 Tw = FNMS(KP673648177, Tm, Tj);
cannam@127 107 Tn = FMA(KP673648177, Tm, Tj);
cannam@127 108 Cr[0] = T5 + Tg;
cannam@127 109 Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
cannam@127 110 Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl));
cannam@127 111 Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn)));
cannam@127 112 TC = FMA(KP666666666, Tn, TB);
cannam@127 113 Tr = FNMS(KP347296355, Tq, Tk);
cannam@127 114 Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To));
cannam@127 115 Ts = FNMS(KP907603734, Tr, Th);
cannam@127 116 }
cannam@127 117 }
cannam@127 118 }
cannam@127 119 }
cannam@127 120 }
cannam@127 121 }
cannam@127 122 Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp);
cannam@127 123 TA = FNMS(KP500000000, Tz, Tw);
cannam@127 124 Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp);
cannam@127 125 Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp);
cannam@127 126 }
cannam@127 127 }
cannam@127 128 }
cannam@127 129
cannam@127 130 static const kr2c_desc desc = { 9, "r2cf_9", {12, 4, 26, 0}, &GENUS };
cannam@127 131
cannam@127 132 void X(codelet_r2cf_9) (planner *p) {
cannam@127 133 X(kr2c_register) (p, r2cf_9, &desc);
cannam@127 134 }
cannam@127 135
cannam@127 136 #else /* HAVE_FMA */
cannam@127 137
cannam@127 138 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */
cannam@127 139
cannam@127 140 /*
cannam@127 141 * This function contains 38 FP additions, 26 FP multiplications,
cannam@127 142 * (or, 21 additions, 9 multiplications, 17 fused multiply/add),
cannam@127 143 * 36 stack variables, 14 constants, and 18 memory accesses
cannam@127 144 */
cannam@127 145 #include "r2cf.h"
cannam@127 146
cannam@127 147 static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 148 {
cannam@127 149 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
cannam@127 150 DK(KP296198132, +0.296198132726023843175338011893050938967728390);
cannam@127 151 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
cannam@127 152 DK(KP813797681, +0.813797681349373692844693217248393223289101568);
cannam@127 153 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
cannam@127 154 DK(KP150383733, +0.150383733180435296639271897612501926072238258);
cannam@127 155 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
cannam@127 156 DK(KP663413948, +0.663413948168938396205421319635891297216863310);
cannam@127 157 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
cannam@127 158 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
cannam@127 159 DK(KP556670399, +0.556670399226419366452912952047023132968291906);
cannam@127 160 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
cannam@127 161 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 162 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 163 {
cannam@127 164 INT i;
cannam@127 165 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
cannam@127 166 E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg;
cannam@127 167 T1 = R0[0];
cannam@127 168 T2 = R1[WS(rs, 1)];
cannam@127 169 T3 = R0[WS(rs, 3)];
cannam@127 170 T4 = T2 + T3;
cannam@127 171 Tr = T3 - T2;
cannam@127 172 {
cannam@127 173 E T6, T7, T8, T9;
cannam@127 174 T6 = R1[0];
cannam@127 175 T7 = R0[WS(rs, 2)];
cannam@127 176 T8 = R1[WS(rs, 3)];
cannam@127 177 T9 = T7 + T8;
cannam@127 178 Ta = T6 + T9;
cannam@127 179 Tl = T8 - T7;
cannam@127 180 Ti = FNMS(KP500000000, T9, T6);
cannam@127 181 }
cannam@127 182 {
cannam@127 183 E Tb, Tc, Td, Te;
cannam@127 184 Tb = R0[WS(rs, 1)];
cannam@127 185 Tc = R1[WS(rs, 2)];
cannam@127 186 Td = R0[WS(rs, 4)];
cannam@127 187 Te = Tc + Td;
cannam@127 188 Tf = Tb + Te;
cannam@127 189 Tk = FNMS(KP500000000, Te, Tb);
cannam@127 190 Tj = Td - Tc;
cannam@127 191 }
cannam@127 192 Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
cannam@127 193 T5 = T1 + T4;
cannam@127 194 Tg = Ta + Tf;
cannam@127 195 Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
cannam@127 196 Cr[0] = T5 + Tg;
cannam@127 197 {
cannam@127 198 E Tt, Th, Tm, Tn, To, Tp, Tq, Ts;
cannam@127 199 Tt = KP866025403 * Tr;
cannam@127 200 Th = FNMS(KP500000000, T4, T1);
cannam@127 201 Tm = FMA(KP766044443, Ti, KP556670399 * Tl);
cannam@127 202 Tn = FMA(KP173648177, Tk, KP852868531 * Tj);
cannam@127 203 To = Tm + Tn;
cannam@127 204 Tp = FNMS(KP642787609, Ti, KP663413948 * Tl);
cannam@127 205 Tq = FNMS(KP984807753, Tk, KP150383733 * Tj);
cannam@127 206 Ts = Tp + Tq;
cannam@127 207 Cr[WS(csr, 1)] = Th + To;
cannam@127 208 Ci[WS(csi, 1)] = Tt + Ts;
cannam@127 209 Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To);
cannam@127 210 Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm)));
cannam@127 211 Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt;
cannam@127 212 Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl);
cannam@127 213 }
cannam@127 214 }
cannam@127 215 }
cannam@127 216 }
cannam@127 217
cannam@127 218 static const kr2c_desc desc = { 9, "r2cf_9", {21, 9, 17, 0}, &GENUS };
cannam@127 219
cannam@127 220 void X(codelet_r2cf_9) (planner *p) {
cannam@127 221 X(kr2c_register) (p, r2cf_9, &desc);
cannam@127 222 }
cannam@127 223
cannam@127 224 #endif /* HAVE_FMA */