annotate src/fftw-3.3.5/rdft/scalar/r2cf/hc2cfdft2_8.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:48:57 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include hc2cf.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 90 FP additions, 66 FP multiplications,
cannam@127 32 * (or, 60 additions, 36 multiplications, 30 fused multiply/add),
cannam@127 33 * 68 stack variables, 2 constants, and 32 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cf.h"
cannam@127 36
cannam@127 37 static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 41 {
cannam@127 42 INT m;
cannam@127 43 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 44 E T1G, T1F, T1C, T1D, T1N, T1B, T1R, T1L;
cannam@127 45 {
cannam@127 46 E T1, T2, Th, Tj, T4, T3, Ti, Tp, T5;
cannam@127 47 T1 = W[0];
cannam@127 48 T2 = W[2];
cannam@127 49 Th = W[4];
cannam@127 50 Tj = W[5];
cannam@127 51 T4 = W[1];
cannam@127 52 T3 = T1 * T2;
cannam@127 53 Ti = T1 * Th;
cannam@127 54 Tp = T1 * Tj;
cannam@127 55 T5 = W[3];
cannam@127 56 {
cannam@127 57 E Tk, Tq, TI, T1a, T1u, TY, TF, TS, T1s, T1c, Tr, T1n, Tg, T16, Tn;
cannam@127 58 E T13, T1f, Ts, To, T1o;
cannam@127 59 {
cannam@127 60 E T6, Tw, Tc, TB, TQ, TM, TC, TR, Tz, TD, TA;
cannam@127 61 {
cannam@127 62 E TX, TV, TT, TU;
cannam@127 63 {
cannam@127 64 E TG, Tb, TH, TP, TL;
cannam@127 65 TG = Ip[0];
cannam@127 66 Tk = FMA(T4, Tj, Ti);
cannam@127 67 Tq = FNMS(T4, Th, Tp);
cannam@127 68 T6 = FMA(T4, T5, T3);
cannam@127 69 Tw = FNMS(T4, T5, T3);
cannam@127 70 Tb = T1 * T5;
cannam@127 71 TH = Im[0];
cannam@127 72 TT = Rm[0];
cannam@127 73 TP = T6 * Tj;
cannam@127 74 TL = T6 * Th;
cannam@127 75 Tc = FNMS(T4, T2, Tb);
cannam@127 76 TB = FMA(T4, T2, Tb);
cannam@127 77 TX = TG + TH;
cannam@127 78 TI = TG - TH;
cannam@127 79 TU = Rp[0];
cannam@127 80 TQ = FNMS(Tc, Th, TP);
cannam@127 81 TM = FMA(Tc, Tj, TL);
cannam@127 82 }
cannam@127 83 T1a = TU + TT;
cannam@127 84 TV = TT - TU;
cannam@127 85 {
cannam@127 86 E Tx, Ty, T1t, TW;
cannam@127 87 Tx = Ip[WS(rs, 2)];
cannam@127 88 Ty = Im[WS(rs, 2)];
cannam@127 89 T1t = T4 * TV;
cannam@127 90 TW = T1 * TV;
cannam@127 91 TC = Rp[WS(rs, 2)];
cannam@127 92 TR = Tx + Ty;
cannam@127 93 Tz = Tx - Ty;
cannam@127 94 T1u = FMA(T1, TX, T1t);
cannam@127 95 TY = FNMS(T4, TX, TW);
cannam@127 96 TD = Rm[WS(rs, 2)];
cannam@127 97 }
cannam@127 98 TA = Tw * Tz;
cannam@127 99 }
cannam@127 100 {
cannam@127 101 E Td, T9, T12, Te, Ta, T1m;
cannam@127 102 {
cannam@127 103 E T7, T8, TN, TE, TO, T1r, T1b;
cannam@127 104 T7 = Ip[WS(rs, 1)];
cannam@127 105 T8 = Im[WS(rs, 1)];
cannam@127 106 TN = TD - TC;
cannam@127 107 TE = TC + TD;
cannam@127 108 Td = Rp[WS(rs, 1)];
cannam@127 109 T9 = T7 - T8;
cannam@127 110 T12 = T7 + T8;
cannam@127 111 TO = TM * TN;
cannam@127 112 T1r = TQ * TN;
cannam@127 113 T1b = Tw * TE;
cannam@127 114 TF = FNMS(TB, TE, TA);
cannam@127 115 TS = FNMS(TQ, TR, TO);
cannam@127 116 T1s = FMA(TM, TR, T1r);
cannam@127 117 T1c = FMA(TB, Tz, T1b);
cannam@127 118 Te = Rm[WS(rs, 1)];
cannam@127 119 }
cannam@127 120 Ta = T6 * T9;
cannam@127 121 T1m = T2 * T12;
cannam@127 122 {
cannam@127 123 E Tl, T10, Tf, Tm, T11, T1e;
cannam@127 124 Tl = Ip[WS(rs, 3)];
cannam@127 125 T10 = Td - Te;
cannam@127 126 Tf = Td + Te;
cannam@127 127 Tm = Im[WS(rs, 3)];
cannam@127 128 Tr = Rp[WS(rs, 3)];
cannam@127 129 T11 = T2 * T10;
cannam@127 130 T1n = FNMS(T5, T10, T1m);
cannam@127 131 T1e = T6 * Tf;
cannam@127 132 Tg = FNMS(Tc, Tf, Ta);
cannam@127 133 T16 = Tl + Tm;
cannam@127 134 Tn = Tl - Tm;
cannam@127 135 T13 = FMA(T5, T12, T11);
cannam@127 136 T1f = FMA(Tc, T9, T1e);
cannam@127 137 Ts = Rm[WS(rs, 3)];
cannam@127 138 }
cannam@127 139 To = Tk * Tn;
cannam@127 140 T1o = Th * T16;
cannam@127 141 }
cannam@127 142 }
cannam@127 143 {
cannam@127 144 E T1z, T1K, T1y, T1k, T1J, T1A, T1x, T1j;
cannam@127 145 {
cannam@127 146 E T1w, TK, T1l, T19, T1d, T1i;
cannam@127 147 {
cannam@127 148 E TJ, T14, Tt, T1v, T1h;
cannam@127 149 T1z = TI - TF;
cannam@127 150 TJ = TF + TI;
cannam@127 151 T14 = Tr - Ts;
cannam@127 152 Tt = Tr + Ts;
cannam@127 153 T1v = T1s + T1u;
cannam@127 154 T1G = T1u - T1s;
cannam@127 155 {
cannam@127 156 E TZ, T1q, Tv, T18, T15;
cannam@127 157 T1F = TY - TS;
cannam@127 158 TZ = TS + TY;
cannam@127 159 T15 = Th * T14;
cannam@127 160 {
cannam@127 161 E T1p, T1g, Tu, T17;
cannam@127 162 T1p = FNMS(Tj, T14, T1o);
cannam@127 163 T1g = Tk * Tt;
cannam@127 164 Tu = FNMS(Tq, Tt, To);
cannam@127 165 T17 = FMA(Tj, T16, T15);
cannam@127 166 T1C = T1p - T1n;
cannam@127 167 T1q = T1n + T1p;
cannam@127 168 T1h = FMA(Tq, Tn, T1g);
cannam@127 169 T1K = Tg - Tu;
cannam@127 170 Tv = Tg + Tu;
cannam@127 171 T18 = T13 + T17;
cannam@127 172 T1D = T13 - T17;
cannam@127 173 }
cannam@127 174 T1w = T1q - T1v;
cannam@127 175 T1y = T1q + T1v;
cannam@127 176 TK = Tv + TJ;
cannam@127 177 T1l = TJ - Tv;
cannam@127 178 T1k = T18 + TZ;
cannam@127 179 T19 = TZ - T18;
cannam@127 180 }
cannam@127 181 T1J = T1a - T1c;
cannam@127 182 T1d = T1a + T1c;
cannam@127 183 T1i = T1f + T1h;
cannam@127 184 T1A = T1f - T1h;
cannam@127 185 }
cannam@127 186 Ip[0] = KP500000000 * (TK + T19);
cannam@127 187 Im[WS(rs, 3)] = KP500000000 * (T19 - TK);
cannam@127 188 Im[WS(rs, 1)] = KP500000000 * (T1w - T1l);
cannam@127 189 T1x = T1d + T1i;
cannam@127 190 T1j = T1d - T1i;
cannam@127 191 Ip[WS(rs, 2)] = KP500000000 * (T1l + T1w);
cannam@127 192 }
cannam@127 193 Rm[WS(rs, 3)] = KP500000000 * (T1x - T1y);
cannam@127 194 Rp[0] = KP500000000 * (T1x + T1y);
cannam@127 195 Rp[WS(rs, 2)] = KP500000000 * (T1j + T1k);
cannam@127 196 Rm[WS(rs, 1)] = KP500000000 * (T1j - T1k);
cannam@127 197 T1N = T1A + T1z;
cannam@127 198 T1B = T1z - T1A;
cannam@127 199 T1R = T1J + T1K;
cannam@127 200 T1L = T1J - T1K;
cannam@127 201 }
cannam@127 202 }
cannam@127 203 }
cannam@127 204 {
cannam@127 205 E T1E, T1O, T1H, T1P;
cannam@127 206 T1E = T1C + T1D;
cannam@127 207 T1O = T1C - T1D;
cannam@127 208 T1H = T1F - T1G;
cannam@127 209 T1P = T1F + T1G;
cannam@127 210 {
cannam@127 211 E T1S, T1Q, T1I, T1M;
cannam@127 212 T1S = T1O + T1P;
cannam@127 213 T1Q = T1O - T1P;
cannam@127 214 T1I = T1E + T1H;
cannam@127 215 T1M = T1H - T1E;
cannam@127 216 Im[0] = -(KP500000000 * (FNMS(KP707106781, T1Q, T1N)));
cannam@127 217 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1Q, T1N));
cannam@127 218 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1S, T1R));
cannam@127 219 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1S, T1R));
cannam@127 220 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1M, T1L));
cannam@127 221 Rm[0] = KP500000000 * (FNMS(KP707106781, T1M, T1L));
cannam@127 222 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1I, T1B)));
cannam@127 223 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1I, T1B));
cannam@127 224 }
cannam@127 225 }
cannam@127 226 }
cannam@127 227 }
cannam@127 228 }
cannam@127 229
cannam@127 230 static const tw_instr twinstr[] = {
cannam@127 231 {TW_CEXP, 1, 1},
cannam@127 232 {TW_CEXP, 1, 3},
cannam@127 233 {TW_CEXP, 1, 7},
cannam@127 234 {TW_NEXT, 1, 0}
cannam@127 235 };
cannam@127 236
cannam@127 237 static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {60, 36, 30, 0} };
cannam@127 238
cannam@127 239 void X(codelet_hc2cfdft2_8) (planner *p) {
cannam@127 240 X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT);
cannam@127 241 }
cannam@127 242 #else /* HAVE_FMA */
cannam@127 243
cannam@127 244 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include hc2cf.h */
cannam@127 245
cannam@127 246 /*
cannam@127 247 * This function contains 90 FP additions, 56 FP multiplications,
cannam@127 248 * (or, 72 additions, 38 multiplications, 18 fused multiply/add),
cannam@127 249 * 51 stack variables, 2 constants, and 32 memory accesses
cannam@127 250 */
cannam@127 251 #include "hc2cf.h"
cannam@127 252
cannam@127 253 static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 254 {
cannam@127 255 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
cannam@127 256 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 257 {
cannam@127 258 INT m;
cannam@127 259 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 260 E T1, T4, T2, T5, Tu, Ty, T7, Td, Ti, Tj, Tk, TP, To, TN;
cannam@127 261 {
cannam@127 262 E T3, Tc, T6, Tb;
cannam@127 263 T1 = W[0];
cannam@127 264 T4 = W[1];
cannam@127 265 T2 = W[2];
cannam@127 266 T5 = W[3];
cannam@127 267 T3 = T1 * T2;
cannam@127 268 Tc = T4 * T2;
cannam@127 269 T6 = T4 * T5;
cannam@127 270 Tb = T1 * T5;
cannam@127 271 Tu = T3 - T6;
cannam@127 272 Ty = Tb + Tc;
cannam@127 273 T7 = T3 + T6;
cannam@127 274 Td = Tb - Tc;
cannam@127 275 Ti = W[4];
cannam@127 276 Tj = W[5];
cannam@127 277 Tk = FMA(T1, Ti, T4 * Tj);
cannam@127 278 TP = FNMS(Td, Ti, T7 * Tj);
cannam@127 279 To = FNMS(T4, Ti, T1 * Tj);
cannam@127 280 TN = FMA(T7, Ti, Td * Tj);
cannam@127 281 }
cannam@127 282 {
cannam@127 283 E TF, T11, TC, T12, T1d, T1e, T1q, TM, TR, T1p, Th, Ts, T15, T14, T1a;
cannam@127 284 E T1b, T1m, TV, TY, T1n;
cannam@127 285 {
cannam@127 286 E TD, TE, TL, TI, TJ, TK, Tx, TQ, TB, TO;
cannam@127 287 TD = Ip[0];
cannam@127 288 TE = Im[0];
cannam@127 289 TL = TD + TE;
cannam@127 290 TI = Rm[0];
cannam@127 291 TJ = Rp[0];
cannam@127 292 TK = TI - TJ;
cannam@127 293 {
cannam@127 294 E Tv, Tw, Tz, TA;
cannam@127 295 Tv = Ip[WS(rs, 2)];
cannam@127 296 Tw = Im[WS(rs, 2)];
cannam@127 297 Tx = Tv - Tw;
cannam@127 298 TQ = Tv + Tw;
cannam@127 299 Tz = Rp[WS(rs, 2)];
cannam@127 300 TA = Rm[WS(rs, 2)];
cannam@127 301 TB = Tz + TA;
cannam@127 302 TO = Tz - TA;
cannam@127 303 }
cannam@127 304 TF = TD - TE;
cannam@127 305 T11 = TJ + TI;
cannam@127 306 TC = FNMS(Ty, TB, Tu * Tx);
cannam@127 307 T12 = FMA(Tu, TB, Ty * Tx);
cannam@127 308 T1d = FNMS(TP, TO, TN * TQ);
cannam@127 309 T1e = FMA(T4, TK, T1 * TL);
cannam@127 310 T1q = T1e - T1d;
cannam@127 311 TM = FNMS(T4, TL, T1 * TK);
cannam@127 312 TR = FMA(TN, TO, TP * TQ);
cannam@127 313 T1p = TR + TM;
cannam@127 314 }
cannam@127 315 {
cannam@127 316 E Ta, TU, Tg, TT, Tn, TX, Tr, TW;
cannam@127 317 {
cannam@127 318 E T8, T9, Te, Tf;
cannam@127 319 T8 = Ip[WS(rs, 1)];
cannam@127 320 T9 = Im[WS(rs, 1)];
cannam@127 321 Ta = T8 - T9;
cannam@127 322 TU = T8 + T9;
cannam@127 323 Te = Rp[WS(rs, 1)];
cannam@127 324 Tf = Rm[WS(rs, 1)];
cannam@127 325 Tg = Te + Tf;
cannam@127 326 TT = Te - Tf;
cannam@127 327 }
cannam@127 328 {
cannam@127 329 E Tl, Tm, Tp, Tq;
cannam@127 330 Tl = Ip[WS(rs, 3)];
cannam@127 331 Tm = Im[WS(rs, 3)];
cannam@127 332 Tn = Tl - Tm;
cannam@127 333 TX = Tl + Tm;
cannam@127 334 Tp = Rp[WS(rs, 3)];
cannam@127 335 Tq = Rm[WS(rs, 3)];
cannam@127 336 Tr = Tp + Tq;
cannam@127 337 TW = Tp - Tq;
cannam@127 338 }
cannam@127 339 Th = FNMS(Td, Tg, T7 * Ta);
cannam@127 340 Ts = FNMS(To, Tr, Tk * Tn);
cannam@127 341 T15 = FMA(Tk, Tr, To * Tn);
cannam@127 342 T14 = FMA(T7, Tg, Td * Ta);
cannam@127 343 T1a = FNMS(T5, TT, T2 * TU);
cannam@127 344 T1b = FNMS(Tj, TW, Ti * TX);
cannam@127 345 T1m = T1b - T1a;
cannam@127 346 TV = FMA(T2, TT, T5 * TU);
cannam@127 347 TY = FMA(Ti, TW, Tj * TX);
cannam@127 348 T1n = TV - TY;
cannam@127 349 }
cannam@127 350 {
cannam@127 351 E T1l, T1x, T1A, T1C, T1s, T1w, T1v, T1B;
cannam@127 352 {
cannam@127 353 E T1j, T1k, T1y, T1z;
cannam@127 354 T1j = TF - TC;
cannam@127 355 T1k = T14 - T15;
cannam@127 356 T1l = KP500000000 * (T1j - T1k);
cannam@127 357 T1x = KP500000000 * (T1k + T1j);
cannam@127 358 T1y = T1m - T1n;
cannam@127 359 T1z = T1p + T1q;
cannam@127 360 T1A = KP353553390 * (T1y - T1z);
cannam@127 361 T1C = KP353553390 * (T1y + T1z);
cannam@127 362 }
cannam@127 363 {
cannam@127 364 E T1o, T1r, T1t, T1u;
cannam@127 365 T1o = T1m + T1n;
cannam@127 366 T1r = T1p - T1q;
cannam@127 367 T1s = KP353553390 * (T1o + T1r);
cannam@127 368 T1w = KP353553390 * (T1r - T1o);
cannam@127 369 T1t = T11 - T12;
cannam@127 370 T1u = Th - Ts;
cannam@127 371 T1v = KP500000000 * (T1t - T1u);
cannam@127 372 T1B = KP500000000 * (T1t + T1u);
cannam@127 373 }
cannam@127 374 Ip[WS(rs, 1)] = T1l + T1s;
cannam@127 375 Rp[WS(rs, 1)] = T1B + T1C;
cannam@127 376 Im[WS(rs, 2)] = T1s - T1l;
cannam@127 377 Rm[WS(rs, 2)] = T1B - T1C;
cannam@127 378 Rm[0] = T1v - T1w;
cannam@127 379 Im[0] = T1A - T1x;
cannam@127 380 Rp[WS(rs, 3)] = T1v + T1w;
cannam@127 381 Ip[WS(rs, 3)] = T1x + T1A;
cannam@127 382 }
cannam@127 383 {
cannam@127 384 E TH, T19, T1g, T1i, T10, T18, T17, T1h;
cannam@127 385 {
cannam@127 386 E Tt, TG, T1c, T1f;
cannam@127 387 Tt = Th + Ts;
cannam@127 388 TG = TC + TF;
cannam@127 389 TH = Tt + TG;
cannam@127 390 T19 = TG - Tt;
cannam@127 391 T1c = T1a + T1b;
cannam@127 392 T1f = T1d + T1e;
cannam@127 393 T1g = T1c - T1f;
cannam@127 394 T1i = T1c + T1f;
cannam@127 395 }
cannam@127 396 {
cannam@127 397 E TS, TZ, T13, T16;
cannam@127 398 TS = TM - TR;
cannam@127 399 TZ = TV + TY;
cannam@127 400 T10 = TS - TZ;
cannam@127 401 T18 = TZ + TS;
cannam@127 402 T13 = T11 + T12;
cannam@127 403 T16 = T14 + T15;
cannam@127 404 T17 = T13 - T16;
cannam@127 405 T1h = T13 + T16;
cannam@127 406 }
cannam@127 407 Ip[0] = KP500000000 * (TH + T10);
cannam@127 408 Rp[0] = KP500000000 * (T1h + T1i);
cannam@127 409 Im[WS(rs, 3)] = KP500000000 * (T10 - TH);
cannam@127 410 Rm[WS(rs, 3)] = KP500000000 * (T1h - T1i);
cannam@127 411 Rm[WS(rs, 1)] = KP500000000 * (T17 - T18);
cannam@127 412 Im[WS(rs, 1)] = KP500000000 * (T1g - T19);
cannam@127 413 Rp[WS(rs, 2)] = KP500000000 * (T17 + T18);
cannam@127 414 Ip[WS(rs, 2)] = KP500000000 * (T19 + T1g);
cannam@127 415 }
cannam@127 416 }
cannam@127 417 }
cannam@127 418 }
cannam@127 419 }
cannam@127 420
cannam@127 421 static const tw_instr twinstr[] = {
cannam@127 422 {TW_CEXP, 1, 1},
cannam@127 423 {TW_CEXP, 1, 3},
cannam@127 424 {TW_CEXP, 1, 7},
cannam@127 425 {TW_NEXT, 1, 0}
cannam@127 426 };
cannam@127 427
cannam@127 428 static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, {72, 38, 18, 0} };
cannam@127 429
cannam@127 430 void X(codelet_hc2cfdft2_8) (planner *p) {
cannam@127 431 X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT);
cannam@127 432 }
cannam@127 433 #endif /* HAVE_FMA */