annotate src/fftw-3.3.5/rdft/scalar/r2cb/r2cbIII_10.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:50:41 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 32 FP additions, 28 FP multiplications,
cannam@127 32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
cannam@127 33 * 38 stack variables, 5 constants, and 20 memory accesses
cannam@127 34 */
cannam@127 35 #include "r2cbIII.h"
cannam@127 36
cannam@127 37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@127 44 {
cannam@127 45 INT i;
cannam@127 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@127 47 E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv;
cannam@127 48 {
cannam@127 49 E T1, To, Ts, Tt, T8, Ta, Te, Tl, Tm, Th, Tn, T9;
cannam@127 50 T1 = Cr[WS(csr, 2)];
cannam@127 51 To = Ci[WS(csi, 2)];
cannam@127 52 {
cannam@127 53 E T2, T3, T5, T6;
cannam@127 54 T2 = Cr[WS(csr, 4)];
cannam@127 55 T3 = Cr[0];
cannam@127 56 T5 = Cr[WS(csr, 3)];
cannam@127 57 T6 = Cr[WS(csr, 1)];
cannam@127 58 {
cannam@127 59 E Tc, T4, T7, Td, Tf, Tg;
cannam@127 60 Tc = Ci[WS(csi, 3)];
cannam@127 61 Ts = T2 - T3;
cannam@127 62 T4 = T2 + T3;
cannam@127 63 Tt = T5 - T6;
cannam@127 64 T7 = T5 + T6;
cannam@127 65 Td = Ci[WS(csi, 1)];
cannam@127 66 Tf = Ci[WS(csi, 4)];
cannam@127 67 Tg = Ci[0];
cannam@127 68 T8 = T4 + T7;
cannam@127 69 Ta = T7 - T4;
cannam@127 70 Te = Tc - Td;
cannam@127 71 Tl = Tc + Td;
cannam@127 72 Tm = Tf + Tg;
cannam@127 73 Th = Tf - Tg;
cannam@127 74 }
cannam@127 75 }
cannam@127 76 R0[0] = KP2_000000000 * (T1 + T8);
cannam@127 77 Tn = Tl - Tm;
cannam@127 78 Tq = Tl + Tm;
cannam@127 79 Ti = FMA(KP618033988, Th, Te);
cannam@127 80 Tk = FNMS(KP618033988, Te, Th);
cannam@127 81 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
cannam@127 82 T9 = FMS(KP250000000, T8, T1);
cannam@127 83 Tu = FMA(KP618033988, Tt, Ts);
cannam@127 84 Tw = FNMS(KP618033988, Ts, Tt);
cannam@127 85 Tp = FMA(KP250000000, Tn, To);
cannam@127 86 Tb = FNMS(KP559016994, Ta, T9);
cannam@127 87 Tj = FMA(KP559016994, Ta, T9);
cannam@127 88 }
cannam@127 89 Tr = FMA(KP559016994, Tq, Tp);
cannam@127 90 Tv = FNMS(KP559016994, Tq, Tp);
cannam@127 91 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
cannam@127 92 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
cannam@127 93 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
cannam@127 94 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
cannam@127 95 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
cannam@127 96 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
cannam@127 97 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
cannam@127 98 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
cannam@127 99 }
cannam@127 100 }
cannam@127 101 }
cannam@127 102
cannam@127 103 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS };
cannam@127 104
cannam@127 105 void X(codelet_r2cbIII_10) (planner *p) {
cannam@127 106 X(kr2c_register) (p, r2cbIII_10, &desc);
cannam@127 107 }
cannam@127 108
cannam@127 109 #else /* HAVE_FMA */
cannam@127 110
cannam@127 111 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
cannam@127 112
cannam@127 113 /*
cannam@127 114 * This function contains 32 FP additions, 16 FP multiplications,
cannam@127 115 * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
cannam@127 116 * 22 stack variables, 5 constants, and 20 memory accesses
cannam@127 117 */
cannam@127 118 #include "r2cbIII.h"
cannam@127 119
cannam@127 120 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 121 {
cannam@127 122 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 123 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
cannam@127 124 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
cannam@127 125 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@127 126 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
cannam@127 127 {
cannam@127 128 INT i;
cannam@127 129 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@127 130 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
cannam@127 131 T1 = Cr[WS(csr, 2)];
cannam@127 132 To = Ci[WS(csi, 2)];
cannam@127 133 {
cannam@127 134 E T2, T3, T4, T5, T6, T7;
cannam@127 135 T2 = Cr[WS(csr, 4)];
cannam@127 136 T3 = Cr[0];
cannam@127 137 T4 = T2 + T3;
cannam@127 138 T5 = Cr[WS(csr, 3)];
cannam@127 139 T6 = Cr[WS(csr, 1)];
cannam@127 140 T7 = T5 + T6;
cannam@127 141 T8 = T4 + T7;
cannam@127 142 Tq = T5 - T6;
cannam@127 143 Ta = KP1_118033988 * (T7 - T4);
cannam@127 144 Tp = T2 - T3;
cannam@127 145 }
cannam@127 146 {
cannam@127 147 E Tc, Td, Tm, Tf, Tg, Tl;
cannam@127 148 Tc = Ci[WS(csi, 4)];
cannam@127 149 Td = Ci[0];
cannam@127 150 Tm = Tc + Td;
cannam@127 151 Tf = Ci[WS(csi, 1)];
cannam@127 152 Tg = Ci[WS(csi, 3)];
cannam@127 153 Tl = Tg + Tf;
cannam@127 154 Te = Tc - Td;
cannam@127 155 Ts = KP1_118033988 * (Tl + Tm);
cannam@127 156 Th = Tf - Tg;
cannam@127 157 Tn = Tl - Tm;
cannam@127 158 }
cannam@127 159 R0[0] = KP2_000000000 * (T1 + T8);
cannam@127 160 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
cannam@127 161 {
cannam@127 162 E Ti, Tj, Tb, Tk, T9;
cannam@127 163 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
cannam@127 164 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
cannam@127 165 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
cannam@127 166 Tb = T9 - Ta;
cannam@127 167 Tk = T9 + Ta;
cannam@127 168 R0[WS(rs, 1)] = Tb + Ti;
cannam@127 169 R0[WS(rs, 3)] = Tk + Tj;
cannam@127 170 R0[WS(rs, 4)] = Ti - Tb;
cannam@127 171 R0[WS(rs, 2)] = Tj - Tk;
cannam@127 172 }
cannam@127 173 {
cannam@127 174 E Tr, Tv, Tu, Tw, Tt;
cannam@127 175 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
cannam@127 176 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
cannam@127 177 Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
cannam@127 178 Tu = Ts + Tt;
cannam@127 179 Tw = Tt - Ts;
cannam@127 180 R1[0] = -(Tr + Tu);
cannam@127 181 R1[WS(rs, 3)] = Tw - Tv;
cannam@127 182 R1[WS(rs, 4)] = Tr - Tu;
cannam@127 183 R1[WS(rs, 1)] = Tv + Tw;
cannam@127 184 }
cannam@127 185 }
cannam@127 186 }
cannam@127 187 }
cannam@127 188
cannam@127 189 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS };
cannam@127 190
cannam@127 191 void X(codelet_r2cbIII_10) (planner *p) {
cannam@127 192 X(kr2c_register) (p, r2cbIII_10, &desc);
cannam@127 193 }
cannam@127 194
cannam@127 195 #endif /* HAVE_FMA */