annotate src/fftw-3.3.5/rdft/scalar/r2cb/hc2cbdft2_8.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:05 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include hc2cb.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 82 FP additions, 36 FP multiplications,
cannam@127 32 * (or, 60 additions, 14 multiplications, 22 fused multiply/add),
cannam@127 33 * 55 stack variables, 1 constants, and 32 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cb.h"
cannam@127 36
cannam@127 37 static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT m;
cannam@127 42 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 43 E T1m, T1r, T1i, T1u, T1o, T1v, T1n, T1w, T1s;
cannam@127 44 {
cannam@127 45 E T1k, Tl, T1p, TE, TP, T1g, TM, T1b, T1f, T1a, TU, Tf, T1l, TH, Tw;
cannam@127 46 E T1q;
cannam@127 47 {
cannam@127 48 E TA, T3, TN, Tk, Th, T6, TO, TD, Tb, Tm, Ta, TK, Tp, Tc, Ts;
cannam@127 49 E Tt;
cannam@127 50 {
cannam@127 51 E T4, T5, TB, TC;
cannam@127 52 {
cannam@127 53 E T1, T2, Ti, Tj;
cannam@127 54 T1 = Rp[0];
cannam@127 55 T2 = Rm[WS(rs, 3)];
cannam@127 56 Ti = Ip[0];
cannam@127 57 Tj = Im[WS(rs, 3)];
cannam@127 58 T4 = Rp[WS(rs, 2)];
cannam@127 59 TA = T1 - T2;
cannam@127 60 T3 = T1 + T2;
cannam@127 61 TN = Ti - Tj;
cannam@127 62 Tk = Ti + Tj;
cannam@127 63 T5 = Rm[WS(rs, 1)];
cannam@127 64 TB = Ip[WS(rs, 2)];
cannam@127 65 TC = Im[WS(rs, 1)];
cannam@127 66 }
cannam@127 67 {
cannam@127 68 E T8, T9, Tn, To;
cannam@127 69 T8 = Rp[WS(rs, 1)];
cannam@127 70 Th = T4 - T5;
cannam@127 71 T6 = T4 + T5;
cannam@127 72 TO = TB - TC;
cannam@127 73 TD = TB + TC;
cannam@127 74 T9 = Rm[WS(rs, 2)];
cannam@127 75 Tn = Ip[WS(rs, 1)];
cannam@127 76 To = Im[WS(rs, 2)];
cannam@127 77 Tb = Rm[0];
cannam@127 78 Tm = T8 - T9;
cannam@127 79 Ta = T8 + T9;
cannam@127 80 TK = Tn - To;
cannam@127 81 Tp = Tn + To;
cannam@127 82 Tc = Rp[WS(rs, 3)];
cannam@127 83 Ts = Im[0];
cannam@127 84 Tt = Ip[WS(rs, 3)];
cannam@127 85 }
cannam@127 86 }
cannam@127 87 {
cannam@127 88 E Tr, Td, Tu, TL, Te, T7;
cannam@127 89 T1k = Tk - Th;
cannam@127 90 Tl = Th + Tk;
cannam@127 91 Tr = Tb - Tc;
cannam@127 92 Td = Tb + Tc;
cannam@127 93 TL = Tt - Ts;
cannam@127 94 Tu = Ts + Tt;
cannam@127 95 T1p = TA + TD;
cannam@127 96 TE = TA - TD;
cannam@127 97 TP = TN + TO;
cannam@127 98 T1g = TN - TO;
cannam@127 99 TM = TK + TL;
cannam@127 100 T1b = TL - TK;
cannam@127 101 T1f = Ta - Td;
cannam@127 102 Te = Ta + Td;
cannam@127 103 T1a = T3 - T6;
cannam@127 104 T7 = T3 + T6;
cannam@127 105 {
cannam@127 106 E Tq, TF, TG, Tv;
cannam@127 107 Tq = Tm + Tp;
cannam@127 108 TF = Tm - Tp;
cannam@127 109 TG = Tr - Tu;
cannam@127 110 Tv = Tr + Tu;
cannam@127 111 TU = T7 - Te;
cannam@127 112 Tf = T7 + Te;
cannam@127 113 T1l = TF - TG;
cannam@127 114 TH = TF + TG;
cannam@127 115 Tw = Tq - Tv;
cannam@127 116 T1q = Tq + Tv;
cannam@127 117 }
cannam@127 118 }
cannam@127 119 }
cannam@127 120 {
cannam@127 121 E TX, T10, T1c, T13, T1h, T1E, T1H, T1C, T1K, T1G, T1L, T1F;
cannam@127 122 {
cannam@127 123 E TQ, Tx, T1y, TI, Tg, Tz;
cannam@127 124 TX = TP - TM;
cannam@127 125 TQ = TM + TP;
cannam@127 126 Tx = FMA(KP707106781, Tw, Tl);
cannam@127 127 T10 = FNMS(KP707106781, Tw, Tl);
cannam@127 128 T1c = T1a + T1b;
cannam@127 129 T1y = T1a - T1b;
cannam@127 130 T13 = FNMS(KP707106781, TH, TE);
cannam@127 131 TI = FMA(KP707106781, TH, TE);
cannam@127 132 Tg = W[0];
cannam@127 133 Tz = W[1];
cannam@127 134 {
cannam@127 135 E T1B, T1A, T1x, T1J, T1z, T1D;
cannam@127 136 {
cannam@127 137 E TR, Ty, TS, TJ;
cannam@127 138 T1B = T1g - T1f;
cannam@127 139 T1h = T1f + T1g;
cannam@127 140 T1A = W[11];
cannam@127 141 TR = Tg * TI;
cannam@127 142 Ty = Tg * Tx;
cannam@127 143 T1x = W[10];
cannam@127 144 T1J = T1A * T1y;
cannam@127 145 TS = FNMS(Tz, Tx, TR);
cannam@127 146 TJ = FMA(Tz, TI, Ty);
cannam@127 147 T1z = T1x * T1y;
cannam@127 148 T1m = FMA(KP707106781, T1l, T1k);
cannam@127 149 T1E = FNMS(KP707106781, T1l, T1k);
cannam@127 150 Im[0] = TS - TQ;
cannam@127 151 Ip[0] = TQ + TS;
cannam@127 152 Rm[0] = Tf + TJ;
cannam@127 153 Rp[0] = Tf - TJ;
cannam@127 154 T1H = FMA(KP707106781, T1q, T1p);
cannam@127 155 T1r = FNMS(KP707106781, T1q, T1p);
cannam@127 156 T1D = W[12];
cannam@127 157 }
cannam@127 158 T1C = FNMS(T1A, T1B, T1z);
cannam@127 159 T1K = FMA(T1x, T1B, T1J);
cannam@127 160 T1G = W[13];
cannam@127 161 T1L = T1D * T1H;
cannam@127 162 T1F = T1D * T1E;
cannam@127 163 }
cannam@127 164 }
cannam@127 165 {
cannam@127 166 E TY, T16, T12, T17, T11;
cannam@127 167 {
cannam@127 168 E TW, TT, T15, TV, TZ, T1M, T1I;
cannam@127 169 TW = W[7];
cannam@127 170 T1M = FNMS(T1G, T1E, T1L);
cannam@127 171 T1I = FMA(T1G, T1H, T1F);
cannam@127 172 TT = W[6];
cannam@127 173 T15 = TW * TU;
cannam@127 174 Im[WS(rs, 3)] = T1M - T1K;
cannam@127 175 Ip[WS(rs, 3)] = T1K + T1M;
cannam@127 176 Rm[WS(rs, 3)] = T1C + T1I;
cannam@127 177 Rp[WS(rs, 3)] = T1C - T1I;
cannam@127 178 TV = TT * TU;
cannam@127 179 TZ = W[8];
cannam@127 180 TY = FNMS(TW, TX, TV);
cannam@127 181 T16 = FMA(TT, TX, T15);
cannam@127 182 T12 = W[9];
cannam@127 183 T17 = TZ * T13;
cannam@127 184 T11 = TZ * T10;
cannam@127 185 }
cannam@127 186 {
cannam@127 187 E T1e, T19, T1t, T1d, T1j, T18, T14;
cannam@127 188 T1e = W[3];
cannam@127 189 T18 = FNMS(T12, T10, T17);
cannam@127 190 T14 = FMA(T12, T13, T11);
cannam@127 191 T19 = W[2];
cannam@127 192 T1t = T1e * T1c;
cannam@127 193 Im[WS(rs, 2)] = T18 - T16;
cannam@127 194 Ip[WS(rs, 2)] = T16 + T18;
cannam@127 195 Rm[WS(rs, 2)] = TY + T14;
cannam@127 196 Rp[WS(rs, 2)] = TY - T14;
cannam@127 197 T1d = T19 * T1c;
cannam@127 198 T1j = W[4];
cannam@127 199 T1i = FNMS(T1e, T1h, T1d);
cannam@127 200 T1u = FMA(T19, T1h, T1t);
cannam@127 201 T1o = W[5];
cannam@127 202 T1v = T1j * T1r;
cannam@127 203 T1n = T1j * T1m;
cannam@127 204 }
cannam@127 205 }
cannam@127 206 }
cannam@127 207 }
cannam@127 208 T1w = FNMS(T1o, T1m, T1v);
cannam@127 209 T1s = FMA(T1o, T1r, T1n);
cannam@127 210 Im[WS(rs, 1)] = T1w - T1u;
cannam@127 211 Ip[WS(rs, 1)] = T1u + T1w;
cannam@127 212 Rm[WS(rs, 1)] = T1i + T1s;
cannam@127 213 Rp[WS(rs, 1)] = T1i - T1s;
cannam@127 214 }
cannam@127 215 }
cannam@127 216 }
cannam@127 217
cannam@127 218 static const tw_instr twinstr[] = {
cannam@127 219 {TW_FULL, 1, 8},
cannam@127 220 {TW_NEXT, 1, 0}
cannam@127 221 };
cannam@127 222
cannam@127 223 static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {60, 14, 22, 0} };
cannam@127 224
cannam@127 225 void X(codelet_hc2cbdft2_8) (planner *p) {
cannam@127 226 X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
cannam@127 227 }
cannam@127 228 #else /* HAVE_FMA */
cannam@127 229
cannam@127 230 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include hc2cb.h */
cannam@127 231
cannam@127 232 /*
cannam@127 233 * This function contains 82 FP additions, 32 FP multiplications,
cannam@127 234 * (or, 68 additions, 18 multiplications, 14 fused multiply/add),
cannam@127 235 * 30 stack variables, 1 constants, and 32 memory accesses
cannam@127 236 */
cannam@127 237 #include "hc2cb.h"
cannam@127 238
cannam@127 239 static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 240 {
cannam@127 241 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 242 {
cannam@127 243 INT m;
cannam@127 244 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 245 E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw;
cannam@127 246 E T1i;
cannam@127 247 {
cannam@127 248 E T3, TC, Tk, TM, T6, Th, TF, TN;
cannam@127 249 {
cannam@127 250 E T1, T2, Ti, Tj;
cannam@127 251 T1 = Rp[0];
cannam@127 252 T2 = Rm[WS(rs, 3)];
cannam@127 253 T3 = T1 + T2;
cannam@127 254 TC = T1 - T2;
cannam@127 255 Ti = Ip[0];
cannam@127 256 Tj = Im[WS(rs, 3)];
cannam@127 257 Tk = Ti + Tj;
cannam@127 258 TM = Ti - Tj;
cannam@127 259 }
cannam@127 260 {
cannam@127 261 E T4, T5, TD, TE;
cannam@127 262 T4 = Rp[WS(rs, 2)];
cannam@127 263 T5 = Rm[WS(rs, 1)];
cannam@127 264 T6 = T4 + T5;
cannam@127 265 Th = T4 - T5;
cannam@127 266 TD = Ip[WS(rs, 2)];
cannam@127 267 TE = Im[WS(rs, 1)];
cannam@127 268 TF = TD + TE;
cannam@127 269 TN = TD - TE;
cannam@127 270 }
cannam@127 271 T7 = T3 + T6;
cannam@127 272 T1d = Tk - Th;
cannam@127 273 T1h = TC + TF;
cannam@127 274 Tl = Th + Tk;
cannam@127 275 TG = TC - TF;
cannam@127 276 T14 = T3 - T6;
cannam@127 277 T19 = TM - TN;
cannam@127 278 TO = TM + TN;
cannam@127 279 }
cannam@127 280 {
cannam@127 281 E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK;
cannam@127 282 {
cannam@127 283 E T8, T9, Tn, To;
cannam@127 284 T8 = Rp[WS(rs, 1)];
cannam@127 285 T9 = Rm[WS(rs, 2)];
cannam@127 286 Ta = T8 + T9;
cannam@127 287 Tm = T8 - T9;
cannam@127 288 Tn = Ip[WS(rs, 1)];
cannam@127 289 To = Im[WS(rs, 2)];
cannam@127 290 Tp = Tn + To;
cannam@127 291 TJ = Tn - To;
cannam@127 292 }
cannam@127 293 {
cannam@127 294 E Tb, Tc, Ts, Tt;
cannam@127 295 Tb = Rm[0];
cannam@127 296 Tc = Rp[WS(rs, 3)];
cannam@127 297 Td = Tb + Tc;
cannam@127 298 Tr = Tb - Tc;
cannam@127 299 Ts = Im[0];
cannam@127 300 Tt = Ip[WS(rs, 3)];
cannam@127 301 Tu = Ts + Tt;
cannam@127 302 TK = Tt - Ts;
cannam@127 303 }
cannam@127 304 Te = Ta + Td;
cannam@127 305 TL = TJ + TK;
cannam@127 306 T18 = Ta - Td;
cannam@127 307 T15 = TK - TJ;
cannam@127 308 {
cannam@127 309 E Tz, TA, Tq, Tv;
cannam@127 310 Tz = Tm - Tp;
cannam@127 311 TA = Tr - Tu;
cannam@127 312 TB = KP707106781 * (Tz + TA);
cannam@127 313 T1e = KP707106781 * (Tz - TA);
cannam@127 314 Tq = Tm + Tp;
cannam@127 315 Tv = Tr + Tu;
cannam@127 316 Tw = KP707106781 * (Tq - Tv);
cannam@127 317 T1i = KP707106781 * (Tq + Tv);
cannam@127 318 }
cannam@127 319 }
cannam@127 320 {
cannam@127 321 E Tf, TP, TI, TQ;
cannam@127 322 Tf = T7 + Te;
cannam@127 323 TP = TL + TO;
cannam@127 324 {
cannam@127 325 E Tx, TH, Tg, Ty;
cannam@127 326 Tx = Tl + Tw;
cannam@127 327 TH = TB + TG;
cannam@127 328 Tg = W[0];
cannam@127 329 Ty = W[1];
cannam@127 330 TI = FMA(Tg, Tx, Ty * TH);
cannam@127 331 TQ = FNMS(Ty, Tx, Tg * TH);
cannam@127 332 }
cannam@127 333 Rp[0] = Tf - TI;
cannam@127 334 Ip[0] = TP + TQ;
cannam@127 335 Rm[0] = Tf + TI;
cannam@127 336 Im[0] = TQ - TP;
cannam@127 337 }
cannam@127 338 {
cannam@127 339 E T1r, T1x, T1w, T1y;
cannam@127 340 {
cannam@127 341 E T1o, T1q, T1n, T1p;
cannam@127 342 T1o = T14 - T15;
cannam@127 343 T1q = T19 - T18;
cannam@127 344 T1n = W[10];
cannam@127 345 T1p = W[11];
cannam@127 346 T1r = FNMS(T1p, T1q, T1n * T1o);
cannam@127 347 T1x = FMA(T1p, T1o, T1n * T1q);
cannam@127 348 }
cannam@127 349 {
cannam@127 350 E T1t, T1v, T1s, T1u;
cannam@127 351 T1t = T1d - T1e;
cannam@127 352 T1v = T1i + T1h;
cannam@127 353 T1s = W[12];
cannam@127 354 T1u = W[13];
cannam@127 355 T1w = FMA(T1s, T1t, T1u * T1v);
cannam@127 356 T1y = FNMS(T1u, T1t, T1s * T1v);
cannam@127 357 }
cannam@127 358 Rp[WS(rs, 3)] = T1r - T1w;
cannam@127 359 Ip[WS(rs, 3)] = T1x + T1y;
cannam@127 360 Rm[WS(rs, 3)] = T1r + T1w;
cannam@127 361 Im[WS(rs, 3)] = T1y - T1x;
cannam@127 362 }
cannam@127 363 {
cannam@127 364 E TV, T11, T10, T12;
cannam@127 365 {
cannam@127 366 E TS, TU, TR, TT;
cannam@127 367 TS = T7 - Te;
cannam@127 368 TU = TO - TL;
cannam@127 369 TR = W[6];
cannam@127 370 TT = W[7];
cannam@127 371 TV = FNMS(TT, TU, TR * TS);
cannam@127 372 T11 = FMA(TT, TS, TR * TU);
cannam@127 373 }
cannam@127 374 {
cannam@127 375 E TX, TZ, TW, TY;
cannam@127 376 TX = Tl - Tw;
cannam@127 377 TZ = TG - TB;
cannam@127 378 TW = W[8];
cannam@127 379 TY = W[9];
cannam@127 380 T10 = FMA(TW, TX, TY * TZ);
cannam@127 381 T12 = FNMS(TY, TX, TW * TZ);
cannam@127 382 }
cannam@127 383 Rp[WS(rs, 2)] = TV - T10;
cannam@127 384 Ip[WS(rs, 2)] = T11 + T12;
cannam@127 385 Rm[WS(rs, 2)] = TV + T10;
cannam@127 386 Im[WS(rs, 2)] = T12 - T11;
cannam@127 387 }
cannam@127 388 {
cannam@127 389 E T1b, T1l, T1k, T1m;
cannam@127 390 {
cannam@127 391 E T16, T1a, T13, T17;
cannam@127 392 T16 = T14 + T15;
cannam@127 393 T1a = T18 + T19;
cannam@127 394 T13 = W[2];
cannam@127 395 T17 = W[3];
cannam@127 396 T1b = FNMS(T17, T1a, T13 * T16);
cannam@127 397 T1l = FMA(T17, T16, T13 * T1a);
cannam@127 398 }
cannam@127 399 {
cannam@127 400 E T1f, T1j, T1c, T1g;
cannam@127 401 T1f = T1d + T1e;
cannam@127 402 T1j = T1h - T1i;
cannam@127 403 T1c = W[4];
cannam@127 404 T1g = W[5];
cannam@127 405 T1k = FMA(T1c, T1f, T1g * T1j);
cannam@127 406 T1m = FNMS(T1g, T1f, T1c * T1j);
cannam@127 407 }
cannam@127 408 Rp[WS(rs, 1)] = T1b - T1k;
cannam@127 409 Ip[WS(rs, 1)] = T1l + T1m;
cannam@127 410 Rm[WS(rs, 1)] = T1b + T1k;
cannam@127 411 Im[WS(rs, 1)] = T1m - T1l;
cannam@127 412 }
cannam@127 413 }
cannam@127 414 }
cannam@127 415 }
cannam@127 416
cannam@127 417 static const tw_instr twinstr[] = {
cannam@127 418 {TW_FULL, 1, 8},
cannam@127 419 {TW_NEXT, 1, 0}
cannam@127 420 };
cannam@127 421
cannam@127 422 static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {68, 18, 14, 0} };
cannam@127 423
cannam@127 424 void X(codelet_hc2cbdft2_8) (planner *p) {
cannam@127 425 X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT);
cannam@127 426 }
cannam@127 427 #endif /* HAVE_FMA */