annotate src/fftw-3.3.5/rdft/scalar/r2cb/hc2cb2_8.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:51:39 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 74 FP additions, 50 FP multiplications,
cannam@127 32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
cannam@127 33 * 64 stack variables, 1 constants, and 32 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cb.h"
cannam@127 36
cannam@127 37 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT m;
cannam@127 42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 43 E Tf, Ti, TK, Tq, TH, TT, TX, TW, TY, TU, TI;
cannam@127 44 {
cannam@127 45 E Tg, Tl, Tp, Th, T1n, T1t, Tj;
cannam@127 46 Tf = W[0];
cannam@127 47 Tg = W[2];
cannam@127 48 Tl = W[4];
cannam@127 49 Tp = W[5];
cannam@127 50 Ti = W[1];
cannam@127 51 Th = Tf * Tg;
cannam@127 52 T1n = Tf * Tl;
cannam@127 53 T1t = Tf * Tp;
cannam@127 54 Tj = W[3];
cannam@127 55 {
cannam@127 56 E T1o, T1u, Tk, T1b, To, T1e, T13, TP, T1p, T7, T1h, T1v, TZ, Tv, T1i;
cannam@127 57 E TB, TA, TQ, Te, T1w, TE, T1j;
cannam@127 58 {
cannam@127 59 E Tr, T3, Ts, T1f, TO, TL, T6, Tt;
cannam@127 60 {
cannam@127 61 E TM, TN, T4, T5;
cannam@127 62 {
cannam@127 63 E T1, Tn, T2, TJ, Tm;
cannam@127 64 T1 = Rp[0];
cannam@127 65 T1o = FMA(Ti, Tp, T1n);
cannam@127 66 T1u = FNMS(Ti, Tl, T1t);
cannam@127 67 Tk = FMA(Ti, Tj, Th);
cannam@127 68 T1b = FNMS(Ti, Tj, Th);
cannam@127 69 Tn = Tf * Tj;
cannam@127 70 T2 = Rm[WS(rs, 3)];
cannam@127 71 TM = Ip[0];
cannam@127 72 TJ = Tk * Tp;
cannam@127 73 Tm = Tk * Tl;
cannam@127 74 To = FNMS(Ti, Tg, Tn);
cannam@127 75 T1e = FMA(Ti, Tg, Tn);
cannam@127 76 Tr = T1 - T2;
cannam@127 77 T3 = T1 + T2;
cannam@127 78 TK = FNMS(To, Tl, TJ);
cannam@127 79 Tq = FMA(To, Tp, Tm);
cannam@127 80 TN = Im[WS(rs, 3)];
cannam@127 81 }
cannam@127 82 T4 = Rp[WS(rs, 2)];
cannam@127 83 T5 = Rm[WS(rs, 1)];
cannam@127 84 Ts = Ip[WS(rs, 2)];
cannam@127 85 T1f = TM - TN;
cannam@127 86 TO = TM + TN;
cannam@127 87 TL = T4 - T5;
cannam@127 88 T6 = T4 + T5;
cannam@127 89 Tt = Im[WS(rs, 1)];
cannam@127 90 }
cannam@127 91 {
cannam@127 92 E Tw, Ta, TC, Tz, Td, TD;
cannam@127 93 {
cannam@127 94 E Tx, Ty, Tb, Tc;
cannam@127 95 {
cannam@127 96 E T8, T1g, Tu, T9;
cannam@127 97 T8 = Rp[WS(rs, 1)];
cannam@127 98 T13 = TO - TL;
cannam@127 99 TP = TL + TO;
cannam@127 100 T1p = T3 - T6;
cannam@127 101 T7 = T3 + T6;
cannam@127 102 T1g = Ts - Tt;
cannam@127 103 Tu = Ts + Tt;
cannam@127 104 T9 = Rm[WS(rs, 2)];
cannam@127 105 Tx = Ip[WS(rs, 1)];
cannam@127 106 T1h = T1f + T1g;
cannam@127 107 T1v = T1f - T1g;
cannam@127 108 TZ = Tr + Tu;
cannam@127 109 Tv = Tr - Tu;
cannam@127 110 Tw = T8 - T9;
cannam@127 111 Ta = T8 + T9;
cannam@127 112 Ty = Im[WS(rs, 2)];
cannam@127 113 }
cannam@127 114 Tb = Rm[0];
cannam@127 115 Tc = Rp[WS(rs, 3)];
cannam@127 116 TC = Ip[WS(rs, 3)];
cannam@127 117 T1i = Tx - Ty;
cannam@127 118 Tz = Tx + Ty;
cannam@127 119 TB = Tb - Tc;
cannam@127 120 Td = Tb + Tc;
cannam@127 121 TD = Im[0];
cannam@127 122 }
cannam@127 123 TA = Tw - Tz;
cannam@127 124 TQ = Tw + Tz;
cannam@127 125 Te = Ta + Td;
cannam@127 126 T1w = Ta - Td;
cannam@127 127 TE = TC + TD;
cannam@127 128 T1j = TC - TD;
cannam@127 129 }
cannam@127 130 }
cannam@127 131 {
cannam@127 132 E T1x, T1k, T1r, TG, TS, T19, T15, T17, T11, T16, T12;
cannam@127 133 {
cannam@127 134 E T1B, T1z, T10, T1A, T1C;
cannam@127 135 T1x = T1v - T1w;
cannam@127 136 T1B = T1w + T1v;
cannam@127 137 Rp[0] = T7 + Te;
cannam@127 138 {
cannam@127 139 E T1q, TR, TF, T14;
cannam@127 140 T1k = T1i + T1j;
cannam@127 141 T1q = T1j - T1i;
cannam@127 142 TR = TB + TE;
cannam@127 143 TF = TB - TE;
cannam@127 144 T1r = T1p - T1q;
cannam@127 145 T1z = T1p + T1q;
cannam@127 146 Rm[0] = T1h + T1k;
cannam@127 147 TG = TA + TF;
cannam@127 148 T14 = TA - TF;
cannam@127 149 TS = TQ - TR;
cannam@127 150 T10 = TQ + TR;
cannam@127 151 T1A = Tk * T1z;
cannam@127 152 T19 = FNMS(KP707106781, T14, T13);
cannam@127 153 T15 = FMA(KP707106781, T14, T13);
cannam@127 154 T1C = Tk * T1B;
cannam@127 155 }
cannam@127 156 T17 = FMA(KP707106781, T10, TZ);
cannam@127 157 T11 = FNMS(KP707106781, T10, TZ);
cannam@127 158 Rp[WS(rs, 1)] = FNMS(To, T1B, T1A);
cannam@127 159 T16 = Tg * T15;
cannam@127 160 Rm[WS(rs, 1)] = FMA(To, T1z, T1C);
cannam@127 161 }
cannam@127 162 T12 = Tg * T11;
cannam@127 163 {
cannam@127 164 E T1l, T1a, T1c, T18;
cannam@127 165 Im[WS(rs, 1)] = FMA(Tj, T11, T16);
cannam@127 166 Ip[WS(rs, 1)] = FNMS(Tj, T15, T12);
cannam@127 167 T18 = Tl * T17;
cannam@127 168 T1l = T1h - T1k;
cannam@127 169 T1a = Tl * T19;
cannam@127 170 T1c = T7 - Te;
cannam@127 171 Ip[WS(rs, 3)] = FNMS(Tp, T19, T18);
cannam@127 172 {
cannam@127 173 E T1s, T1m, T1d, T1y, TV;
cannam@127 174 Im[WS(rs, 3)] = FMA(Tp, T17, T1a);
cannam@127 175 T1m = T1e * T1c;
cannam@127 176 T1d = T1b * T1c;
cannam@127 177 T1s = T1o * T1r;
cannam@127 178 Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m);
cannam@127 179 Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d);
cannam@127 180 Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s);
cannam@127 181 T1y = T1o * T1x;
cannam@127 182 TV = FMA(KP707106781, TG, Tv);
cannam@127 183 TH = FNMS(KP707106781, TG, Tv);
cannam@127 184 TT = FNMS(KP707106781, TS, TP);
cannam@127 185 TX = FMA(KP707106781, TS, TP);
cannam@127 186 Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y);
cannam@127 187 TW = Tf * TV;
cannam@127 188 TY = Ti * TV;
cannam@127 189 }
cannam@127 190 }
cannam@127 191 }
cannam@127 192 }
cannam@127 193 }
cannam@127 194 Ip[0] = FNMS(Ti, TX, TW);
cannam@127 195 Im[0] = FMA(Tf, TX, TY);
cannam@127 196 TU = TK * TH;
cannam@127 197 TI = Tq * TH;
cannam@127 198 Im[WS(rs, 2)] = FMA(Tq, TT, TU);
cannam@127 199 Ip[WS(rs, 2)] = FNMS(TK, TT, TI);
cannam@127 200 }
cannam@127 201 }
cannam@127 202 }
cannam@127 203
cannam@127 204 static const tw_instr twinstr[] = {
cannam@127 205 {TW_CEXP, 1, 1},
cannam@127 206 {TW_CEXP, 1, 3},
cannam@127 207 {TW_CEXP, 1, 7},
cannam@127 208 {TW_NEXT, 1, 0}
cannam@127 209 };
cannam@127 210
cannam@127 211 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} };
cannam@127 212
cannam@127 213 void X(codelet_hc2cb2_8) (planner *p) {
cannam@127 214 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
cannam@127 215 }
cannam@127 216 #else /* HAVE_FMA */
cannam@127 217
cannam@127 218 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
cannam@127 219
cannam@127 220 /*
cannam@127 221 * This function contains 74 FP additions, 44 FP multiplications,
cannam@127 222 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
cannam@127 223 * 46 stack variables, 1 constants, and 32 memory accesses
cannam@127 224 */
cannam@127 225 #include "hc2cb.h"
cannam@127 226
cannam@127 227 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 228 {
cannam@127 229 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 230 {
cannam@127 231 INT m;
cannam@127 232 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@127 233 E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT;
cannam@127 234 {
cannam@127 235 E Th, To, Tk, Tn;
cannam@127 236 Tf = W[0];
cannam@127 237 Ti = W[1];
cannam@127 238 Tg = W[2];
cannam@127 239 Tj = W[3];
cannam@127 240 Th = Tf * Tg;
cannam@127 241 To = Ti * Tg;
cannam@127 242 Tk = Ti * Tj;
cannam@127 243 Tn = Tf * Tj;
cannam@127 244 Tl = Th - Tk;
cannam@127 245 Tp = Tn + To;
cannam@127 246 TP = Th + Tk;
cannam@127 247 TR = Tn - To;
cannam@127 248 TF = W[4];
cannam@127 249 TG = W[5];
cannam@127 250 TH = FMA(Tf, TF, Ti * TG);
cannam@127 251 T15 = FNMS(TR, TF, TP * TG);
cannam@127 252 TL = FNMS(Ti, TF, Tf * TG);
cannam@127 253 TT = FMA(TP, TF, TR * TG);
cannam@127 254 }
cannam@127 255 {
cannam@127 256 E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12;
cannam@127 257 E TN, Tm, TE;
cannam@127 258 {
cannam@127 259 E T3, TU, Ts, T17, T6, T16, Tv, TV;
cannam@127 260 {
cannam@127 261 E T1, T2, Tq, Tr;
cannam@127 262 T1 = Rp[0];
cannam@127 263 T2 = Rm[WS(rs, 3)];
cannam@127 264 T3 = T1 + T2;
cannam@127 265 TU = T1 - T2;
cannam@127 266 Tq = Ip[0];
cannam@127 267 Tr = Im[WS(rs, 3)];
cannam@127 268 Ts = Tq - Tr;
cannam@127 269 T17 = Tq + Tr;
cannam@127 270 }
cannam@127 271 {
cannam@127 272 E T4, T5, Tt, Tu;
cannam@127 273 T4 = Rp[WS(rs, 2)];
cannam@127 274 T5 = Rm[WS(rs, 1)];
cannam@127 275 T6 = T4 + T5;
cannam@127 276 T16 = T4 - T5;
cannam@127 277 Tt = Ip[WS(rs, 2)];
cannam@127 278 Tu = Im[WS(rs, 1)];
cannam@127 279 Tv = Tt - Tu;
cannam@127 280 TV = Tt + Tu;
cannam@127 281 }
cannam@127 282 T7 = T3 + T6;
cannam@127 283 T1f = TU + TV;
cannam@127 284 T1i = T17 - T16;
cannam@127 285 Tw = Ts + Tv;
cannam@127 286 TI = T3 - T6;
cannam@127 287 TW = TU - TV;
cannam@127 288 T18 = T16 + T17;
cannam@127 289 TM = Ts - Tv;
cannam@127 290 }
cannam@127 291 {
cannam@127 292 E Ta, TX, Tz, TY, Td, T10, TC, T11;
cannam@127 293 {
cannam@127 294 E T8, T9, Tx, Ty;
cannam@127 295 T8 = Rp[WS(rs, 1)];
cannam@127 296 T9 = Rm[WS(rs, 2)];
cannam@127 297 Ta = T8 + T9;
cannam@127 298 TX = T8 - T9;
cannam@127 299 Tx = Ip[WS(rs, 1)];
cannam@127 300 Ty = Im[WS(rs, 2)];
cannam@127 301 Tz = Tx - Ty;
cannam@127 302 TY = Tx + Ty;
cannam@127 303 }
cannam@127 304 {
cannam@127 305 E Tb, Tc, TA, TB;
cannam@127 306 Tb = Rm[0];
cannam@127 307 Tc = Rp[WS(rs, 3)];
cannam@127 308 Td = Tb + Tc;
cannam@127 309 T10 = Tb - Tc;
cannam@127 310 TA = Ip[WS(rs, 3)];
cannam@127 311 TB = Im[0];
cannam@127 312 TC = TA - TB;
cannam@127 313 T11 = TA + TB;
cannam@127 314 }
cannam@127 315 Te = Ta + Td;
cannam@127 316 T19 = TX + TY;
cannam@127 317 T1a = T10 + T11;
cannam@127 318 TD = Tz + TC;
cannam@127 319 TJ = TC - Tz;
cannam@127 320 TZ = TX - TY;
cannam@127 321 T12 = T10 - T11;
cannam@127 322 TN = Ta - Td;
cannam@127 323 }
cannam@127 324 Rp[0] = T7 + Te;
cannam@127 325 Rm[0] = Tw + TD;
cannam@127 326 Tm = T7 - Te;
cannam@127 327 TE = Tw - TD;
cannam@127 328 Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm);
cannam@127 329 Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE);
cannam@127 330 {
cannam@127 331 E TQ, TS, TK, TO;
cannam@127 332 TQ = TI + TJ;
cannam@127 333 TS = TN + TM;
cannam@127 334 Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ);
cannam@127 335 Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ);
cannam@127 336 TK = TI - TJ;
cannam@127 337 TO = TM - TN;
cannam@127 338 Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK);
cannam@127 339 Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK);
cannam@127 340 }
cannam@127 341 {
cannam@127 342 E T1h, T1l, T1k, T1m, T1g, T1j;
cannam@127 343 T1g = KP707106781 * (T19 + T1a);
cannam@127 344 T1h = T1f - T1g;
cannam@127 345 T1l = T1f + T1g;
cannam@127 346 T1j = KP707106781 * (TZ - T12);
cannam@127 347 T1k = T1i + T1j;
cannam@127 348 T1m = T1i - T1j;
cannam@127 349 Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h);
cannam@127 350 Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h);
cannam@127 351 Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l);
cannam@127 352 Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l);
cannam@127 353 }
cannam@127 354 {
cannam@127 355 E T14, T1d, T1c, T1e, T13, T1b;
cannam@127 356 T13 = KP707106781 * (TZ + T12);
cannam@127 357 T14 = TW - T13;
cannam@127 358 T1d = TW + T13;
cannam@127 359 T1b = KP707106781 * (T19 - T1a);
cannam@127 360 T1c = T18 - T1b;
cannam@127 361 T1e = T18 + T1b;
cannam@127 362 Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14);
cannam@127 363 Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c);
cannam@127 364 Ip[0] = FNMS(Ti, T1e, Tf * T1d);
cannam@127 365 Im[0] = FMA(Ti, T1d, Tf * T1e);
cannam@127 366 }
cannam@127 367 }
cannam@127 368 }
cannam@127 369 }
cannam@127 370 }
cannam@127 371
cannam@127 372 static const tw_instr twinstr[] = {
cannam@127 373 {TW_CEXP, 1, 1},
cannam@127 374 {TW_CEXP, 1, 3},
cannam@127 375 {TW_CEXP, 1, 7},
cannam@127 376 {TW_NEXT, 1, 0}
cannam@127 377 };
cannam@127 378
cannam@127 379 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} };
cannam@127 380
cannam@127 381 void X(codelet_hc2cb2_8) (planner *p) {
cannam@127 382 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
cannam@127 383 }
cannam@127 384 #endif /* HAVE_FMA */