annotate src/fftw-3.3.5/rdft/scalar/r2cb/hb2_5.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:50:22 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include hb.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 44 FP additions, 40 FP multiplications,
cannam@127 32 * (or, 14 additions, 10 multiplications, 30 fused multiply/add),
cannam@127 33 * 51 stack variables, 4 constants, and 20 memory accesses
cannam@127 34 */
cannam@127 35 #include "hb.h"
cannam@127 36
cannam@127 37 static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 43 {
cannam@127 44 INT m;
cannam@127 45 for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@127 46 E T9, TB, Tz, Tm, T1, TG, TO, TJ, TC, Tn, Tg, To, Tf, Tw, TQ;
cannam@127 47 E T8, Tb, Th, Ta, Ti, Tp;
cannam@127 48 T9 = W[0];
cannam@127 49 TB = W[3];
cannam@127 50 Tz = W[2];
cannam@127 51 Tm = W[1];
cannam@127 52 {
cannam@127 53 E T4, Tu, T5, T6;
cannam@127 54 T1 = cr[0];
cannam@127 55 {
cannam@127 56 E TF, TA, T2, T3;
cannam@127 57 TF = T9 * TB;
cannam@127 58 TA = T9 * Tz;
cannam@127 59 T2 = cr[WS(rs, 1)];
cannam@127 60 T3 = ci[0];
cannam@127 61 TG = FMA(Tm, Tz, TF);
cannam@127 62 TO = FNMS(Tm, Tz, TF);
cannam@127 63 TJ = FMA(Tm, TB, TA);
cannam@127 64 TC = FNMS(Tm, TB, TA);
cannam@127 65 T4 = T2 + T3;
cannam@127 66 Tu = T2 - T3;
cannam@127 67 T5 = cr[WS(rs, 2)];
cannam@127 68 T6 = ci[WS(rs, 1)];
cannam@127 69 }
cannam@127 70 Tn = ci[WS(rs, 4)];
cannam@127 71 {
cannam@127 72 E Td, Te, T7, Tv;
cannam@127 73 Td = ci[WS(rs, 3)];
cannam@127 74 Te = cr[WS(rs, 4)];
cannam@127 75 T7 = T5 + T6;
cannam@127 76 Tv = T5 - T6;
cannam@127 77 Tg = ci[WS(rs, 2)];
cannam@127 78 To = Td - Te;
cannam@127 79 Tf = Td + Te;
cannam@127 80 Tw = FMA(KP618033988, Tv, Tu);
cannam@127 81 TQ = FNMS(KP618033988, Tu, Tv);
cannam@127 82 T8 = T4 + T7;
cannam@127 83 Tb = T4 - T7;
cannam@127 84 Th = cr[WS(rs, 3)];
cannam@127 85 }
cannam@127 86 }
cannam@127 87 cr[0] = T1 + T8;
cannam@127 88 Ta = FNMS(KP250000000, T8, T1);
cannam@127 89 Ti = Tg + Th;
cannam@127 90 Tp = Tg - Th;
cannam@127 91 {
cannam@127 92 E Tc, TK, Ts, Tq;
cannam@127 93 Tc = FMA(KP559016994, Tb, Ta);
cannam@127 94 TK = FNMS(KP559016994, Tb, Ta);
cannam@127 95 Ts = To - Tp;
cannam@127 96 Tq = To + Tp;
cannam@127 97 {
cannam@127 98 E Tj, TL, Tr, TM, TT;
cannam@127 99 Tj = FMA(KP618033988, Ti, Tf);
cannam@127 100 TL = FNMS(KP618033988, Tf, Ti);
cannam@127 101 ci[0] = Tn + Tq;
cannam@127 102 Tr = FNMS(KP250000000, Tq, Tn);
cannam@127 103 TM = FMA(KP951056516, TL, TK);
cannam@127 104 TT = FNMS(KP951056516, TL, TK);
cannam@127 105 {
cannam@127 106 E Tk, TD, Tt, TP;
cannam@127 107 Tk = FNMS(KP951056516, Tj, Tc);
cannam@127 108 TD = FMA(KP951056516, Tj, Tc);
cannam@127 109 Tt = FMA(KP559016994, Ts, Tr);
cannam@127 110 TP = FNMS(KP559016994, Ts, Tr);
cannam@127 111 {
cannam@127 112 E TW, TU, TS, TN;
cannam@127 113 TW = TB * TT;
cannam@127 114 TU = Tz * TT;
cannam@127 115 TS = TO * TM;
cannam@127 116 TN = TJ * TM;
cannam@127 117 {
cannam@127 118 E TI, TE, Ty, Tl;
cannam@127 119 TI = TG * TD;
cannam@127 120 TE = TC * TD;
cannam@127 121 Ty = Tm * Tk;
cannam@127 122 Tl = T9 * Tk;
cannam@127 123 {
cannam@127 124 E TR, TV, Tx, TH;
cannam@127 125 TR = FNMS(KP951056516, TQ, TP);
cannam@127 126 TV = FMA(KP951056516, TQ, TP);
cannam@127 127 Tx = FMA(KP951056516, Tw, Tt);
cannam@127 128 TH = FNMS(KP951056516, Tw, Tt);
cannam@127 129 ci[WS(rs, 3)] = FMA(Tz, TV, TW);
cannam@127 130 cr[WS(rs, 3)] = FNMS(TB, TV, TU);
cannam@127 131 ci[WS(rs, 2)] = FMA(TJ, TR, TS);
cannam@127 132 cr[WS(rs, 2)] = FNMS(TO, TR, TN);
cannam@127 133 ci[WS(rs, 4)] = FMA(TC, TH, TI);
cannam@127 134 cr[WS(rs, 4)] = FNMS(TG, TH, TE);
cannam@127 135 ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
cannam@127 136 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
cannam@127 137 }
cannam@127 138 }
cannam@127 139 }
cannam@127 140 }
cannam@127 141 }
cannam@127 142 }
cannam@127 143 }
cannam@127 144 }
cannam@127 145 }
cannam@127 146
cannam@127 147 static const tw_instr twinstr[] = {
cannam@127 148 {TW_CEXP, 1, 1},
cannam@127 149 {TW_CEXP, 1, 3},
cannam@127 150 {TW_NEXT, 1, 0}
cannam@127 151 };
cannam@127 152
cannam@127 153 static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, {14, 10, 30, 0} };
cannam@127 154
cannam@127 155 void X(codelet_hb2_5) (planner *p) {
cannam@127 156 X(khc2hc_register) (p, hb2_5, &desc);
cannam@127 157 }
cannam@127 158 #else /* HAVE_FMA */
cannam@127 159
cannam@127 160 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 5 -dif -name hb2_5 -include hb.h */
cannam@127 161
cannam@127 162 /*
cannam@127 163 * This function contains 44 FP additions, 32 FP multiplications,
cannam@127 164 * (or, 30 additions, 18 multiplications, 14 fused multiply/add),
cannam@127 165 * 33 stack variables, 4 constants, and 20 memory accesses
cannam@127 166 */
cannam@127 167 #include "hb.h"
cannam@127 168
cannam@127 169 static void hb2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 170 {
cannam@127 171 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 172 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@127 173 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 174 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 175 {
cannam@127 176 INT m;
cannam@127 177 for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@127 178 E Th, Tk, Ti, Tl, Tn, TP, Tx, TN;
cannam@127 179 {
cannam@127 180 E Tj, Tw, Tm, Tv;
cannam@127 181 Th = W[0];
cannam@127 182 Tk = W[1];
cannam@127 183 Ti = W[2];
cannam@127 184 Tl = W[3];
cannam@127 185 Tj = Th * Ti;
cannam@127 186 Tw = Tk * Ti;
cannam@127 187 Tm = Tk * Tl;
cannam@127 188 Tv = Th * Tl;
cannam@127 189 Tn = Tj + Tm;
cannam@127 190 TP = Tv + Tw;
cannam@127 191 Tx = Tv - Tw;
cannam@127 192 TN = Tj - Tm;
cannam@127 193 }
cannam@127 194 {
cannam@127 195 E T1, Tp, TK, TA, T8, To, T9, Tt, TI, TC, Tg, TB;
cannam@127 196 {
cannam@127 197 E T4, Ty, T7, Tz;
cannam@127 198 T1 = cr[0];
cannam@127 199 {
cannam@127 200 E T2, T3, T5, T6;
cannam@127 201 T2 = cr[WS(rs, 1)];
cannam@127 202 T3 = ci[0];
cannam@127 203 T4 = T2 + T3;
cannam@127 204 Ty = T2 - T3;
cannam@127 205 T5 = cr[WS(rs, 2)];
cannam@127 206 T6 = ci[WS(rs, 1)];
cannam@127 207 T7 = T5 + T6;
cannam@127 208 Tz = T5 - T6;
cannam@127 209 }
cannam@127 210 Tp = KP559016994 * (T4 - T7);
cannam@127 211 TK = FMA(KP951056516, Ty, KP587785252 * Tz);
cannam@127 212 TA = FNMS(KP951056516, Tz, KP587785252 * Ty);
cannam@127 213 T8 = T4 + T7;
cannam@127 214 To = FNMS(KP250000000, T8, T1);
cannam@127 215 }
cannam@127 216 {
cannam@127 217 E Tc, Tr, Tf, Ts;
cannam@127 218 T9 = ci[WS(rs, 4)];
cannam@127 219 {
cannam@127 220 E Ta, Tb, Td, Te;
cannam@127 221 Ta = ci[WS(rs, 3)];
cannam@127 222 Tb = cr[WS(rs, 4)];
cannam@127 223 Tc = Ta - Tb;
cannam@127 224 Tr = Ta + Tb;
cannam@127 225 Td = ci[WS(rs, 2)];
cannam@127 226 Te = cr[WS(rs, 3)];
cannam@127 227 Tf = Td - Te;
cannam@127 228 Ts = Td + Te;
cannam@127 229 }
cannam@127 230 Tt = FNMS(KP951056516, Ts, KP587785252 * Tr);
cannam@127 231 TI = FMA(KP951056516, Tr, KP587785252 * Ts);
cannam@127 232 TC = KP559016994 * (Tc - Tf);
cannam@127 233 Tg = Tc + Tf;
cannam@127 234 TB = FNMS(KP250000000, Tg, T9);
cannam@127 235 }
cannam@127 236 cr[0] = T1 + T8;
cannam@127 237 ci[0] = T9 + Tg;
cannam@127 238 {
cannam@127 239 E Tu, TF, TE, TG, Tq, TD;
cannam@127 240 Tq = To - Tp;
cannam@127 241 Tu = Tq - Tt;
cannam@127 242 TF = Tq + Tt;
cannam@127 243 TD = TB - TC;
cannam@127 244 TE = TA + TD;
cannam@127 245 TG = TD - TA;
cannam@127 246 cr[WS(rs, 2)] = FNMS(Tx, TE, Tn * Tu);
cannam@127 247 ci[WS(rs, 2)] = FMA(Tn, TE, Tx * Tu);
cannam@127 248 cr[WS(rs, 3)] = FNMS(Tl, TG, Ti * TF);
cannam@127 249 ci[WS(rs, 3)] = FMA(Ti, TG, Tl * TF);
cannam@127 250 }
cannam@127 251 {
cannam@127 252 E TJ, TO, TM, TQ, TH, TL;
cannam@127 253 TH = Tp + To;
cannam@127 254 TJ = TH - TI;
cannam@127 255 TO = TH + TI;
cannam@127 256 TL = TC + TB;
cannam@127 257 TM = TK + TL;
cannam@127 258 TQ = TL - TK;
cannam@127 259 cr[WS(rs, 1)] = FNMS(Tk, TM, Th * TJ);
cannam@127 260 ci[WS(rs, 1)] = FMA(Th, TM, Tk * TJ);
cannam@127 261 cr[WS(rs, 4)] = FNMS(TP, TQ, TN * TO);
cannam@127 262 ci[WS(rs, 4)] = FMA(TN, TQ, TP * TO);
cannam@127 263 }
cannam@127 264 }
cannam@127 265 }
cannam@127 266 }
cannam@127 267 }
cannam@127 268
cannam@127 269 static const tw_instr twinstr[] = {
cannam@127 270 {TW_CEXP, 1, 1},
cannam@127 271 {TW_CEXP, 1, 3},
cannam@127 272 {TW_NEXT, 1, 0}
cannam@127 273 };
cannam@127 274
cannam@127 275 static const hc2hc_desc desc = { 5, "hb2_5", twinstr, &GENUS, {30, 18, 14, 0} };
cannam@127 276
cannam@127 277 void X(codelet_hb2_5) (planner *p) {
cannam@127 278 X(khc2hc_register) (p, hb2_5, &desc);
cannam@127 279 }
cannam@127 280 #endif /* HAVE_FMA */