annotate src/fftw-3.3.5/genfft/assoctable.ml @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 (*
cannam@127 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@127 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 5 *
cannam@127 6 * This program is free software; you can redistribute it and/or modify
cannam@127 7 * it under the terms of the GNU General Public License as published by
cannam@127 8 * the Free Software Foundation; either version 2 of the License, or
cannam@127 9 * (at your option) any later version.
cannam@127 10 *
cannam@127 11 * This program is distributed in the hope that it will be useful,
cannam@127 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 14 * GNU General Public License for more details.
cannam@127 15 *
cannam@127 16 * You should have received a copy of the GNU General Public License
cannam@127 17 * along with this program; if not, write to the Free Software
cannam@127 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 19 *
cannam@127 20 *)
cannam@127 21
cannam@127 22 (*************************************************************
cannam@127 23 * Functional associative table
cannam@127 24 *************************************************************)
cannam@127 25
cannam@127 26 (*
cannam@127 27 * this module implements a functional associative table.
cannam@127 28 * The table is parametrized by an equality predicate and
cannam@127 29 * a hash function, with the restriction that (equal a b) ==>
cannam@127 30 * hash a == hash b.
cannam@127 31 * The table is purely functional and implemented using a binary
cannam@127 32 * search tree (not balanced for now)
cannam@127 33 *)
cannam@127 34
cannam@127 35 type ('a, 'b) elem =
cannam@127 36 Leaf
cannam@127 37 | Node of int * ('a, 'b) elem * ('a, 'b) elem * ('a * 'b) list
cannam@127 38
cannam@127 39 let empty = Leaf
cannam@127 40
cannam@127 41 let lookup hash equal key table =
cannam@127 42 let h = hash key in
cannam@127 43 let rec look = function
cannam@127 44 Leaf -> None
cannam@127 45 | Node (hash_key, left, right, this_list) ->
cannam@127 46 if (hash_key < h) then look left
cannam@127 47 else if (hash_key > h) then look right
cannam@127 48 else let rec loop = function
cannam@127 49 [] -> None
cannam@127 50 | (a, b) :: rest -> if (equal key a) then Some b else loop rest
cannam@127 51 in loop this_list
cannam@127 52 in look table
cannam@127 53
cannam@127 54 let insert hash key value table =
cannam@127 55 let h = hash key in
cannam@127 56 let rec ins = function
cannam@127 57 Leaf -> Node (h, Leaf, Leaf, [(key, value)])
cannam@127 58 | Node (hash_key, left, right, this_list) ->
cannam@127 59 if (hash_key < h) then
cannam@127 60 Node (hash_key, ins left, right, this_list)
cannam@127 61 else if (hash_key > h) then
cannam@127 62 Node (hash_key, left, ins right, this_list)
cannam@127 63 else
cannam@127 64 Node (hash_key, left, right, (key, value) :: this_list)
cannam@127 65 in ins table