annotate src/fftw-3.3.3/libbench2/verify-r2r.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
cannam@95 22 general for all of the r2r variants...oh well, for now */
cannam@95 23
cannam@95 24 #include "verify.h"
cannam@95 25 #include <math.h>
cannam@95 26 #include <stdlib.h>
cannam@95 27 #include <stdio.h>
cannam@95 28
cannam@95 29 typedef struct {
cannam@95 30 bench_problem *p;
cannam@95 31 bench_tensor *probsz;
cannam@95 32 bench_tensor *totalsz;
cannam@95 33 bench_tensor *pckdsz;
cannam@95 34 bench_tensor *pckdvecsz;
cannam@95 35 } info;
cannam@95 36
cannam@95 37 /*
cannam@95 38 * Utility functions:
cannam@95 39 */
cannam@95 40
cannam@95 41 static double dabs(double x) { return (x < 0.0) ? -x : x; }
cannam@95 42 static double dmin(double x, double y) { return (x < y) ? x : y; }
cannam@95 43
cannam@95 44 static double raerror(R *a, R *b, int n)
cannam@95 45 {
cannam@95 46 if (n > 0) {
cannam@95 47 /* compute the relative Linf error */
cannam@95 48 double e = 0.0, mag = 0.0;
cannam@95 49 int i;
cannam@95 50
cannam@95 51 for (i = 0; i < n; ++i) {
cannam@95 52 e = dmax(e, dabs(a[i] - b[i]));
cannam@95 53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
cannam@95 54 }
cannam@95 55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
cannam@95 56 e = 0.0;
cannam@95 57 else
cannam@95 58 e /= mag;
cannam@95 59
cannam@95 60 #ifdef HAVE_ISNAN
cannam@95 61 BENCH_ASSERT(!isnan(e));
cannam@95 62 #endif
cannam@95 63 return e;
cannam@95 64 } else
cannam@95 65 return 0.0;
cannam@95 66 }
cannam@95 67
cannam@95 68 #define by2pi(m, n) ((K2PI * (m)) / (n))
cannam@95 69
cannam@95 70 /*
cannam@95 71 * Improve accuracy by reducing x to range [0..1/8]
cannam@95 72 * before multiplication by 2 * PI.
cannam@95 73 */
cannam@95 74
cannam@95 75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
cannam@95 76 {
cannam@95 77 /* waiting for C to get tail recursion... */
cannam@95 78 trigreal half_n = n * 0.5;
cannam@95 79 trigreal quarter_n = half_n * 0.5;
cannam@95 80 trigreal eighth_n = quarter_n * 0.5;
cannam@95 81 trigreal sgn = 1.0;
cannam@95 82
cannam@95 83 if (sinp) goto sin;
cannam@95 84 cos:
cannam@95 85 if (m < 0) { m = -m; /* goto cos; */ }
cannam@95 86 if (m > half_n) { m = n - m; goto cos; }
cannam@95 87 if (m > eighth_n) { m = quarter_n - m; goto sin; }
cannam@95 88 return sgn * COS(by2pi(m, n));
cannam@95 89
cannam@95 90 msin:
cannam@95 91 sgn = -sgn;
cannam@95 92 sin:
cannam@95 93 if (m < 0) { m = -m; goto msin; }
cannam@95 94 if (m > half_n) { m = n - m; goto msin; }
cannam@95 95 if (m > eighth_n) { m = quarter_n - m; goto cos; }
cannam@95 96 return sgn * SIN(by2pi(m, n));
cannam@95 97 }
cannam@95 98
cannam@95 99 static trigreal cos2pi(int m, int n)
cannam@95 100 {
cannam@95 101 return bench_sincos((trigreal)m, (trigreal)n, 0);
cannam@95 102 }
cannam@95 103
cannam@95 104 static trigreal sin2pi(int m, int n)
cannam@95 105 {
cannam@95 106 return bench_sincos((trigreal)m, (trigreal)n, 1);
cannam@95 107 }
cannam@95 108
cannam@95 109 static trigreal cos00(int i, int j, int n)
cannam@95 110 {
cannam@95 111 return cos2pi(i * j, n);
cannam@95 112 }
cannam@95 113
cannam@95 114 static trigreal cos01(int i, int j, int n)
cannam@95 115 {
cannam@95 116 return cos00(i, 2*j + 1, 2*n);
cannam@95 117 }
cannam@95 118
cannam@95 119 static trigreal cos10(int i, int j, int n)
cannam@95 120 {
cannam@95 121 return cos00(2*i + 1, j, 2*n);
cannam@95 122 }
cannam@95 123
cannam@95 124 static trigreal cos11(int i, int j, int n)
cannam@95 125 {
cannam@95 126 return cos00(2*i + 1, 2*j + 1, 4*n);
cannam@95 127 }
cannam@95 128
cannam@95 129 static trigreal sin00(int i, int j, int n)
cannam@95 130 {
cannam@95 131 return sin2pi(i * j, n);
cannam@95 132 }
cannam@95 133
cannam@95 134 static trigreal sin01(int i, int j, int n)
cannam@95 135 {
cannam@95 136 return sin00(i, 2*j + 1, 2*n);
cannam@95 137 }
cannam@95 138
cannam@95 139 static trigreal sin10(int i, int j, int n)
cannam@95 140 {
cannam@95 141 return sin00(2*i + 1, j, 2*n);
cannam@95 142 }
cannam@95 143
cannam@95 144 static trigreal sin11(int i, int j, int n)
cannam@95 145 {
cannam@95 146 return sin00(2*i + 1, 2*j + 1, 4*n);
cannam@95 147 }
cannam@95 148
cannam@95 149 static trigreal realhalf(int i, int j, int n)
cannam@95 150 {
cannam@95 151 UNUSED(i);
cannam@95 152 if (j <= n - j)
cannam@95 153 return 1.0;
cannam@95 154 else
cannam@95 155 return 0.0;
cannam@95 156 }
cannam@95 157
cannam@95 158 static trigreal coshalf(int i, int j, int n)
cannam@95 159 {
cannam@95 160 if (j <= n - j)
cannam@95 161 return cos00(i, j, n);
cannam@95 162 else
cannam@95 163 return cos00(i, n - j, n);
cannam@95 164 }
cannam@95 165
cannam@95 166 static trigreal unity(int i, int j, int n)
cannam@95 167 {
cannam@95 168 UNUSED(i);
cannam@95 169 UNUSED(j);
cannam@95 170 UNUSED(n);
cannam@95 171 return 1.0;
cannam@95 172 }
cannam@95 173
cannam@95 174 typedef trigreal (*trigfun)(int, int, int);
cannam@95 175
cannam@95 176 static void rarand(R *a, int n)
cannam@95 177 {
cannam@95 178 int i;
cannam@95 179
cannam@95 180 /* generate random inputs */
cannam@95 181 for (i = 0; i < n; ++i) {
cannam@95 182 a[i] = mydrand();
cannam@95 183 }
cannam@95 184 }
cannam@95 185
cannam@95 186 /* C = A + B */
cannam@95 187 static void raadd(R *c, R *a, R *b, int n)
cannam@95 188 {
cannam@95 189 int i;
cannam@95 190
cannam@95 191 for (i = 0; i < n; ++i) {
cannam@95 192 c[i] = a[i] + b[i];
cannam@95 193 }
cannam@95 194 }
cannam@95 195
cannam@95 196 /* C = A - B */
cannam@95 197 static void rasub(R *c, R *a, R *b, int n)
cannam@95 198 {
cannam@95 199 int i;
cannam@95 200
cannam@95 201 for (i = 0; i < n; ++i) {
cannam@95 202 c[i] = a[i] - b[i];
cannam@95 203 }
cannam@95 204 }
cannam@95 205
cannam@95 206 /* B = rotate left A + rotate right A */
cannam@95 207 static void rarolr(R *b, R *a, int n, int nb, int na,
cannam@95 208 r2r_kind_t k)
cannam@95 209 {
cannam@95 210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
cannam@95 211 int i, ib, ia;
cannam@95 212
cannam@95 213 for (ib = 0; ib < nb; ++ib) {
cannam@95 214 for (i = 0; i < n - 1; ++i)
cannam@95 215 for (ia = 0; ia < na; ++ia)
cannam@95 216 b[(ib * n + i) * na + ia] =
cannam@95 217 a[(ib * n + i + 1) * na + ia];
cannam@95 218
cannam@95 219 /* ugly switch to do boundary conditions for various r2r types */
cannam@95 220 switch (k) {
cannam@95 221 /* periodic boundaries */
cannam@95 222 case R2R_DHT:
cannam@95 223 case R2R_R2HC:
cannam@95 224 for (ia = 0; ia < na; ++ia) {
cannam@95 225 b[(ib * n + n - 1) * na + ia] =
cannam@95 226 a[(ib * n + 0) * na + ia];
cannam@95 227 b[(ib * n + 0) * na + ia] +=
cannam@95 228 a[(ib * n + n - 1) * na + ia];
cannam@95 229 }
cannam@95 230 break;
cannam@95 231
cannam@95 232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
cannam@95 233 if (n > 2) {
cannam@95 234 if (n % 2 == 0)
cannam@95 235 for (ia = 0; ia < na; ++ia) {
cannam@95 236 b[(ib * n + n - 1) * na + ia] = 0.0;
cannam@95 237 b[(ib * n + 0) * na + ia] +=
cannam@95 238 a[(ib * n + 1) * na + ia];
cannam@95 239 b[(ib * n + n/2) * na + ia] +=
cannam@95 240 + a[(ib * n + n/2 - 1) * na + ia]
cannam@95 241 - a[(ib * n + n/2 + 1) * na + ia];
cannam@95 242 b[(ib * n + n/2 + 1) * na + ia] +=
cannam@95 243 - a[(ib * n + n/2) * na + ia];
cannam@95 244 }
cannam@95 245 else
cannam@95 246 for (ia = 0; ia < na; ++ia) {
cannam@95 247 b[(ib * n + n - 1) * na + ia] = 0.0;
cannam@95 248 b[(ib * n + 0) * na + ia] +=
cannam@95 249 a[(ib * n + 1) * na + ia];
cannam@95 250 b[(ib * n + n/2) * na + ia] +=
cannam@95 251 + a[(ib * n + n/2) * na + ia]
cannam@95 252 - a[(ib * n + n/2 + 1) * na + ia];
cannam@95 253 b[(ib * n + n/2 + 1) * na + ia] +=
cannam@95 254 - a[(ib * n + n/2 + 1) * na + ia]
cannam@95 255 - a[(ib * n + n/2) * na + ia];
cannam@95 256 }
cannam@95 257 } else /* n <= 2 */ {
cannam@95 258 for (ia = 0; ia < na; ++ia) {
cannam@95 259 b[(ib * n + n - 1) * na + ia] =
cannam@95 260 a[(ib * n + 0) * na + ia];
cannam@95 261 b[(ib * n + 0) * na + ia] +=
cannam@95 262 a[(ib * n + n - 1) * na + ia];
cannam@95 263 }
cannam@95 264 }
cannam@95 265 break;
cannam@95 266
cannam@95 267 /* various even/odd boundary conditions */
cannam@95 268 case R2R_REDFT00:
cannam@95 269 isL1 = isR1 = 1;
cannam@95 270 goto mirrors;
cannam@95 271 case R2R_REDFT01:
cannam@95 272 isL1 = 1;
cannam@95 273 goto mirrors;
cannam@95 274 case R2R_REDFT10:
cannam@95 275 isL0 = isR0 = 1;
cannam@95 276 goto mirrors;
cannam@95 277 case R2R_REDFT11:
cannam@95 278 isL0 = 1;
cannam@95 279 isR0 = -1;
cannam@95 280 goto mirrors;
cannam@95 281 case R2R_RODFT00:
cannam@95 282 goto mirrors;
cannam@95 283 case R2R_RODFT01:
cannam@95 284 isR1 = 1;
cannam@95 285 goto mirrors;
cannam@95 286 case R2R_RODFT10:
cannam@95 287 isL0 = isR0 = -1;
cannam@95 288 goto mirrors;
cannam@95 289 case R2R_RODFT11:
cannam@95 290 isL0 = -1;
cannam@95 291 isR0 = 1;
cannam@95 292 goto mirrors;
cannam@95 293
cannam@95 294 mirrors:
cannam@95 295
cannam@95 296 for (ia = 0; ia < na; ++ia)
cannam@95 297 b[(ib * n + n - 1) * na + ia] =
cannam@95 298 isR0 * a[(ib * n + n - 1) * na + ia]
cannam@95 299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
cannam@95 300 : 0);
cannam@95 301
cannam@95 302 for (ia = 0; ia < na; ++ia)
cannam@95 303 b[(ib * n) * na + ia] +=
cannam@95 304 isL0 * a[(ib * n) * na + ia]
cannam@95 305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
cannam@95 306
cannam@95 307 }
cannam@95 308
cannam@95 309 for (i = 1; i < n; ++i)
cannam@95 310 for (ia = 0; ia < na; ++ia)
cannam@95 311 b[(ib * n + i) * na + ia] +=
cannam@95 312 a[(ib * n + i - 1) * na + ia];
cannam@95 313 }
cannam@95 314 }
cannam@95 315
cannam@95 316 static void raphase_shift(R *b, R *a, int n, int nb, int na,
cannam@95 317 int n0, int k0, trigfun t)
cannam@95 318 {
cannam@95 319 int j, jb, ja;
cannam@95 320
cannam@95 321 for (jb = 0; jb < nb; ++jb)
cannam@95 322 for (j = 0; j < n; ++j) {
cannam@95 323 trigreal c = 2.0 * t(1, j + k0, n0);
cannam@95 324
cannam@95 325 for (ja = 0; ja < na; ++ja) {
cannam@95 326 int k = (jb * n + j) * na + ja;
cannam@95 327 b[k] = a[k] * c;
cannam@95 328 }
cannam@95 329 }
cannam@95 330 }
cannam@95 331
cannam@95 332 /* A = alpha * A (real, in place) */
cannam@95 333 static void rascale(R *a, R alpha, int n)
cannam@95 334 {
cannam@95 335 int i;
cannam@95 336
cannam@95 337 for (i = 0; i < n; ++i) {
cannam@95 338 a[i] *= alpha;
cannam@95 339 }
cannam@95 340 }
cannam@95 341
cannam@95 342 /*
cannam@95 343 * compute rdft:
cannam@95 344 */
cannam@95 345
cannam@95 346 /* copy real A into real B, using output stride of A and input stride of B */
cannam@95 347 typedef struct {
cannam@95 348 dotens2_closure k;
cannam@95 349 R *ra;
cannam@95 350 R *rb;
cannam@95 351 } cpyr_closure;
cannam@95 352
cannam@95 353 static void cpyr0(dotens2_closure *k_,
cannam@95 354 int indxa, int ondxa, int indxb, int ondxb)
cannam@95 355 {
cannam@95 356 cpyr_closure *k = (cpyr_closure *)k_;
cannam@95 357 k->rb[indxb] = k->ra[ondxa];
cannam@95 358 UNUSED(indxa); UNUSED(ondxb);
cannam@95 359 }
cannam@95 360
cannam@95 361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
cannam@95 362 {
cannam@95 363 cpyr_closure k;
cannam@95 364 k.k.apply = cpyr0;
cannam@95 365 k.ra = ra; k.rb = rb;
cannam@95 366 bench_dotens2(sza, szb, &k.k);
cannam@95 367 }
cannam@95 368
cannam@95 369 static void dofft(info *nfo, R *in, R *out)
cannam@95 370 {
cannam@95 371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
cannam@95 372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
cannam@95 373 doit(1, nfo->p);
cannam@95 374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
cannam@95 375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
cannam@95 376 }
cannam@95 377
cannam@95 378 static double racmp(R *a, R *b, int n, const char *test, double tol)
cannam@95 379 {
cannam@95 380 double d = raerror(a, b, n);
cannam@95 381 if (d > tol) {
cannam@95 382 ovtpvt_err("Found relative error %e (%s)\n", d, test);
cannam@95 383 {
cannam@95 384 int i, N;
cannam@95 385 N = n > 300 && verbose <= 2 ? 300 : n;
cannam@95 386 for (i = 0; i < N; ++i)
cannam@95 387 ovtpvt_err("%8d %16.12f %16.12f\n", i,
cannam@95 388 (double) a[i],
cannam@95 389 (double) b[i]);
cannam@95 390 }
cannam@95 391 bench_exit(EXIT_FAILURE);
cannam@95 392 }
cannam@95 393 return d;
cannam@95 394 }
cannam@95 395
cannam@95 396 /***********************************************************************/
cannam@95 397
cannam@95 398 typedef struct {
cannam@95 399 int n; /* physical size */
cannam@95 400 int n0; /* "logical" transform size */
cannam@95 401 int i0, k0; /* shifts of input/output */
cannam@95 402 trigfun ti, ts; /* impulse/shift trig functions */
cannam@95 403 } dim_stuff;
cannam@95 404
cannam@95 405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
cannam@95 406 R *A, int N)
cannam@95 407 {
cannam@95 408 if (rnk == 0)
cannam@95 409 A[0] = impulse_amp;
cannam@95 410 else {
cannam@95 411 int i;
cannam@95 412 N /= d->n;
cannam@95 413 for (i = 0; i < d->n; ++i) {
cannam@95 414 impulse_response(rnk - 1, d + 1,
cannam@95 415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
cannam@95 416 A + i * N, N);
cannam@95 417 }
cannam@95 418 }
cannam@95 419 }
cannam@95 420
cannam@95 421 /***************************************************************************/
cannam@95 422
cannam@95 423 /*
cannam@95 424 * Implementation of the FFT tester described in
cannam@95 425 *
cannam@95 426 * Funda Ergün. Testing multivariate linear functions: Overcoming the
cannam@95 427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
cannam@95 428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
cannam@95 429 * Nevada, 29 May--1 June 1995.
cannam@95 430 *
cannam@95 431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
cannam@95 432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
cannam@95 433 */
cannam@95 434
cannam@95 435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
cannam@95 436 R *outB, R *outC, R *tmp, int rounds, double tol)
cannam@95 437 {
cannam@95 438 double e = 0.0;
cannam@95 439 int j;
cannam@95 440
cannam@95 441 for (j = 0; j < rounds; ++j) {
cannam@95 442 R alpha, beta;
cannam@95 443 alpha = mydrand();
cannam@95 444 beta = mydrand();
cannam@95 445 rarand(inA, n);
cannam@95 446 rarand(inB, n);
cannam@95 447 dofft(nfo, inA, outA);
cannam@95 448 dofft(nfo, inB, outB);
cannam@95 449
cannam@95 450 rascale(outA, alpha, n);
cannam@95 451 rascale(outB, beta, n);
cannam@95 452 raadd(tmp, outA, outB, n);
cannam@95 453 rascale(inA, alpha, n);
cannam@95 454 rascale(inB, beta, n);
cannam@95 455 raadd(inC, inA, inB, n);
cannam@95 456 dofft(nfo, inC, outC);
cannam@95 457
cannam@95 458 e = dmax(e, racmp(outC, tmp, n, "linear", tol));
cannam@95 459 }
cannam@95 460 return e;
cannam@95 461 }
cannam@95 462
cannam@95 463 static double rimpulse(dim_stuff *d, R impulse_amp,
cannam@95 464 int n, int vecn, info *nfo,
cannam@95 465 R *inA, R *inB, R *inC,
cannam@95 466 R *outA, R *outB, R *outC,
cannam@95 467 R *tmp, int rounds, double tol)
cannam@95 468 {
cannam@95 469 double e = 0.0;
cannam@95 470 int N = n * vecn;
cannam@95 471 int i;
cannam@95 472 int j;
cannam@95 473
cannam@95 474 /* test 2: check that the unit impulse is transformed properly */
cannam@95 475
cannam@95 476 for (i = 0; i < N; ++i) {
cannam@95 477 /* pls */
cannam@95 478 inA[i] = 0.0;
cannam@95 479 }
cannam@95 480 for (i = 0; i < vecn; ++i) {
cannam@95 481 inA[i * n] = (i+1) / (double)(vecn+1);
cannam@95 482
cannam@95 483 /* transform of the pls */
cannam@95 484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
cannam@95 485 outA + i * n, n);
cannam@95 486 }
cannam@95 487
cannam@95 488 dofft(nfo, inA, tmp);
cannam@95 489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
cannam@95 490
cannam@95 491 for (j = 0; j < rounds; ++j) {
cannam@95 492 rarand(inB, N);
cannam@95 493 rasub(inC, inA, inB, N);
cannam@95 494 dofft(nfo, inB, outB);
cannam@95 495 dofft(nfo, inC, outC);
cannam@95 496 raadd(tmp, outB, outC, N);
cannam@95 497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
cannam@95 498 }
cannam@95 499 return e;
cannam@95 500 }
cannam@95 501
cannam@95 502 static double t_shift(int n, int vecn, info *nfo,
cannam@95 503 R *inA, R *inB, R *outA, R *outB, R *tmp,
cannam@95 504 int rounds, double tol,
cannam@95 505 dim_stuff *d)
cannam@95 506 {
cannam@95 507 double e = 0.0;
cannam@95 508 int nb, na, dim, N = n * vecn;
cannam@95 509 int i, j;
cannam@95 510 bench_tensor *sz = nfo->probsz;
cannam@95 511
cannam@95 512 /* test 3: check the time-shift property */
cannam@95 513 /* the paper performs more tests, but this code should be fine too */
cannam@95 514
cannam@95 515 nb = 1;
cannam@95 516 na = n;
cannam@95 517
cannam@95 518 /* check shifts across all SZ dimensions */
cannam@95 519 for (dim = 0; dim < sz->rnk; ++dim) {
cannam@95 520 int ncur = sz->dims[dim].n;
cannam@95 521
cannam@95 522 na /= ncur;
cannam@95 523
cannam@95 524 for (j = 0; j < rounds; ++j) {
cannam@95 525 rarand(inA, N);
cannam@95 526
cannam@95 527 for (i = 0; i < vecn; ++i) {
cannam@95 528 rarolr(inB + i * n, inA + i*n, ncur, nb,na,
cannam@95 529 nfo->p->k[dim]);
cannam@95 530 }
cannam@95 531 dofft(nfo, inA, outA);
cannam@95 532 dofft(nfo, inB, outB);
cannam@95 533 for (i = 0; i < vecn; ++i)
cannam@95 534 raphase_shift(tmp + i * n, outA + i * n, ncur,
cannam@95 535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
cannam@95 536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
cannam@95 537 }
cannam@95 538
cannam@95 539 nb *= ncur;
cannam@95 540 }
cannam@95 541 return e;
cannam@95 542 }
cannam@95 543
cannam@95 544 /***********************************************************************/
cannam@95 545
cannam@95 546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
cannam@95 547 {
cannam@95 548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
cannam@95 549 info nfo;
cannam@95 550 int n, vecn, N;
cannam@95 551 double impulse_amp = 1.0;
cannam@95 552 dim_stuff *d;
cannam@95 553 int i;
cannam@95 554
cannam@95 555 if (rounds == 0)
cannam@95 556 rounds = 20; /* default value */
cannam@95 557
cannam@95 558 n = tensor_sz(p->sz);
cannam@95 559 vecn = tensor_sz(p->vecsz);
cannam@95 560 N = n * vecn;
cannam@95 561
cannam@95 562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
cannam@95 563 for (i = 0; i < p->sz->rnk; ++i) {
cannam@95 564 int n0, i0, k0;
cannam@95 565 trigfun ti, ts;
cannam@95 566
cannam@95 567 d[i].n = n0 = p->sz->dims[i].n;
cannam@95 568 if (p->k[i] > R2R_DHT)
cannam@95 569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
cannam@95 570 (p->k[i] == R2R_RODFT00 ? 1 : 0)));
cannam@95 571
cannam@95 572 switch (p->k[i]) {
cannam@95 573 case R2R_R2HC:
cannam@95 574 i0 = k0 = 0;
cannam@95 575 ti = realhalf;
cannam@95 576 ts = coshalf;
cannam@95 577 break;
cannam@95 578 case R2R_DHT:
cannam@95 579 i0 = k0 = 0;
cannam@95 580 ti = unity;
cannam@95 581 ts = cos00;
cannam@95 582 break;
cannam@95 583 case R2R_HC2R:
cannam@95 584 i0 = k0 = 0;
cannam@95 585 ti = unity;
cannam@95 586 ts = cos00;
cannam@95 587 break;
cannam@95 588 case R2R_REDFT00:
cannam@95 589 i0 = k0 = 0;
cannam@95 590 ti = ts = cos00;
cannam@95 591 break;
cannam@95 592 case R2R_REDFT01:
cannam@95 593 i0 = k0 = 0;
cannam@95 594 ti = ts = cos01;
cannam@95 595 break;
cannam@95 596 case R2R_REDFT10:
cannam@95 597 i0 = k0 = 0;
cannam@95 598 ti = cos10; impulse_amp *= 2.0;
cannam@95 599 ts = cos00;
cannam@95 600 break;
cannam@95 601 case R2R_REDFT11:
cannam@95 602 i0 = k0 = 0;
cannam@95 603 ti = cos11; impulse_amp *= 2.0;
cannam@95 604 ts = cos01;
cannam@95 605 break;
cannam@95 606 case R2R_RODFT00:
cannam@95 607 i0 = k0 = 1;
cannam@95 608 ti = sin00; impulse_amp *= 2.0;
cannam@95 609 ts = cos00;
cannam@95 610 break;
cannam@95 611 case R2R_RODFT01:
cannam@95 612 i0 = 1; k0 = 0;
cannam@95 613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
cannam@95 614 ts = cos01;
cannam@95 615 break;
cannam@95 616 case R2R_RODFT10:
cannam@95 617 i0 = 0; k0 = 1;
cannam@95 618 ti = sin10; impulse_amp *= 2.0;
cannam@95 619 ts = cos00;
cannam@95 620 break;
cannam@95 621 case R2R_RODFT11:
cannam@95 622 i0 = k0 = 0;
cannam@95 623 ti = sin11; impulse_amp *= 2.0;
cannam@95 624 ts = cos01;
cannam@95 625 break;
cannam@95 626 default:
cannam@95 627 BENCH_ASSERT(0);
cannam@95 628 return;
cannam@95 629 }
cannam@95 630
cannam@95 631 d[i].n0 = n0;
cannam@95 632 d[i].i0 = i0;
cannam@95 633 d[i].k0 = k0;
cannam@95 634 d[i].ti = ti;
cannam@95 635 d[i].ts = ts;
cannam@95 636 }
cannam@95 637
cannam@95 638
cannam@95 639 inA = (R *) bench_malloc(N * sizeof(R));
cannam@95 640 inB = (R *) bench_malloc(N * sizeof(R));
cannam@95 641 inC = (R *) bench_malloc(N * sizeof(R));
cannam@95 642 outA = (R *) bench_malloc(N * sizeof(R));
cannam@95 643 outB = (R *) bench_malloc(N * sizeof(R));
cannam@95 644 outC = (R *) bench_malloc(N * sizeof(R));
cannam@95 645 tmp = (R *) bench_malloc(N * sizeof(R));
cannam@95 646
cannam@95 647 nfo.p = p;
cannam@95 648 nfo.probsz = p->sz;
cannam@95 649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
cannam@95 650 nfo.pckdsz = verify_pack(nfo.totalsz, 1);
cannam@95 651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
cannam@95 652
cannam@95 653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
cannam@95 654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
cannam@95 655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
cannam@95 656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
cannam@95 657 rounds, tol, d);
cannam@95 658
cannam@95 659 /* grr, verify-lib.c:preserves_input() only works for complex */
cannam@95 660 if (!p->in_place && !p->destroy_input) {
cannam@95 661 bench_tensor *totalsz_swap, *pckdsz_swap;
cannam@95 662 totalsz_swap = tensor_copy_swapio(nfo.totalsz);
cannam@95 663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
cannam@95 664
cannam@95 665 for (i = 0; i < rounds; ++i) {
cannam@95 666 rarand(inA, N);
cannam@95 667 dofft(&nfo, inA, outB);
cannam@95 668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
cannam@95 669 racmp(inB, inA, N, "preserves_input", 0.0);
cannam@95 670 }
cannam@95 671
cannam@95 672 tensor_destroy(totalsz_swap);
cannam@95 673 tensor_destroy(pckdsz_swap);
cannam@95 674 }
cannam@95 675
cannam@95 676 tensor_destroy(nfo.totalsz);
cannam@95 677 tensor_destroy(nfo.pckdsz);
cannam@95 678 tensor_destroy(nfo.pckdvecsz);
cannam@95 679 bench_free(tmp);
cannam@95 680 bench_free(outC);
cannam@95 681 bench_free(outB);
cannam@95 682 bench_free(outA);
cannam@95 683 bench_free(inC);
cannam@95 684 bench_free(inB);
cannam@95 685 bench_free(inA);
cannam@95 686 bench_free(d);
cannam@95 687 }
cannam@95 688
cannam@95 689
cannam@95 690 typedef struct {
cannam@95 691 dofft_closure k;
cannam@95 692 bench_problem *p;
cannam@95 693 int n0;
cannam@95 694 } dofft_r2r_closure;
cannam@95 695
cannam@95 696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
cannam@95 697 {
cannam@95 698 int i;
cannam@95 699 for (i = 0; i < n; ++i)
cannam@95 700 out[i * os] = in[i * is] * scale;
cannam@95 701 }
cannam@95 702
cannam@95 703 static void mke00(C *a, int n, int c)
cannam@95 704 {
cannam@95 705 int i;
cannam@95 706 for (i = 1; i + i < n; ++i)
cannam@95 707 a[n - i][c] = a[i][c];
cannam@95 708 }
cannam@95 709
cannam@95 710 static void mkre00(C *a, int n)
cannam@95 711 {
cannam@95 712 mkreal(a, n);
cannam@95 713 mke00(a, n, 0);
cannam@95 714 }
cannam@95 715
cannam@95 716 static void mkimag(C *a, int n)
cannam@95 717 {
cannam@95 718 int i;
cannam@95 719 for (i = 0; i < n; ++i)
cannam@95 720 c_re(a[i]) = 0.0;
cannam@95 721 }
cannam@95 722
cannam@95 723 static void mko00(C *a, int n, int c)
cannam@95 724 {
cannam@95 725 int i;
cannam@95 726 a[0][c] = 0.0;
cannam@95 727 for (i = 1; i + i < n; ++i)
cannam@95 728 a[n - i][c] = -a[i][c];
cannam@95 729 if (i + i == n)
cannam@95 730 a[i][c] = 0.0;
cannam@95 731 }
cannam@95 732
cannam@95 733 static void mkro00(C *a, int n)
cannam@95 734 {
cannam@95 735 mkreal(a, n);
cannam@95 736 mko00(a, n, 0);
cannam@95 737 }
cannam@95 738
cannam@95 739 static void mkio00(C *a, int n)
cannam@95 740 {
cannam@95 741 mkimag(a, n);
cannam@95 742 mko00(a, n, 1);
cannam@95 743 }
cannam@95 744
cannam@95 745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */
cannam@95 746 {
cannam@95 747 R a0;
cannam@95 748 a0 = c_re(a[0]);
cannam@95 749 mko00(a, n/2, 0);
cannam@95 750 c_re(a[n/2]) = -(c_re(a[0]) = a0);
cannam@95 751 mkre00(a, n);
cannam@95 752 }
cannam@95 753
cannam@95 754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */
cannam@95 755 {
cannam@95 756 c_re(a[0]) = c_im(a[0]) = 0.0;
cannam@95 757 mkre00(a, n/2);
cannam@95 758 mkro00(a, n);
cannam@95 759 }
cannam@95 760
cannam@95 761 static void mkoddonly(C *a, int n)
cannam@95 762 {
cannam@95 763 int i;
cannam@95 764 for (i = 0; i < n; i += 2)
cannam@95 765 c_re(a[i]) = c_im(a[i]) = 0.0;
cannam@95 766 }
cannam@95 767
cannam@95 768 static void mkre10(C *a, int n)
cannam@95 769 {
cannam@95 770 mkoddonly(a, n);
cannam@95 771 mkre00(a, n);
cannam@95 772 }
cannam@95 773
cannam@95 774 static void mkio10(C *a, int n)
cannam@95 775 {
cannam@95 776 mkoddonly(a, n);
cannam@95 777 mkio00(a, n);
cannam@95 778 }
cannam@95 779
cannam@95 780 static void mkre11(C *a, int n)
cannam@95 781 {
cannam@95 782 mkoddonly(a, n);
cannam@95 783 mko00(a, n/2, 0);
cannam@95 784 mkre00(a, n);
cannam@95 785 }
cannam@95 786
cannam@95 787 static void mkro11(C *a, int n)
cannam@95 788 {
cannam@95 789 mkoddonly(a, n);
cannam@95 790 mkre00(a, n/2);
cannam@95 791 mkro00(a, n);
cannam@95 792 }
cannam@95 793
cannam@95 794 static void mkio11(C *a, int n)
cannam@95 795 {
cannam@95 796 mkoddonly(a, n);
cannam@95 797 mke00(a, n/2, 1);
cannam@95 798 mkio00(a, n);
cannam@95 799 }
cannam@95 800
cannam@95 801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
cannam@95 802 {
cannam@95 803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
cannam@95 804 bench_problem *p = k->p;
cannam@95 805 bench_real *ri, *ro;
cannam@95 806 int n, is, os;
cannam@95 807
cannam@95 808 n = p->sz->dims[0].n;
cannam@95 809 is = p->sz->dims[0].is;
cannam@95 810 os = p->sz->dims[0].os;
cannam@95 811
cannam@95 812 ri = (bench_real *) p->in;
cannam@95 813 ro = (bench_real *) p->out;
cannam@95 814
cannam@95 815 switch (p->k[0]) {
cannam@95 816 case R2R_R2HC:
cannam@95 817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@95 818 break;
cannam@95 819 case R2R_HC2R:
cannam@95 820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
cannam@95 821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
cannam@95 822 break;
cannam@95 823 case R2R_REDFT00:
cannam@95 824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@95 825 break;
cannam@95 826 case R2R_RODFT00:
cannam@95 827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
cannam@95 828 break;
cannam@95 829 case R2R_REDFT01:
cannam@95 830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@95 831 break;
cannam@95 832 case R2R_REDFT10:
cannam@95 833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@95 834 break;
cannam@95 835 case R2R_RODFT01:
cannam@95 836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
cannam@95 837 break;
cannam@95 838 case R2R_RODFT10:
cannam@95 839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
cannam@95 840 break;
cannam@95 841 case R2R_REDFT11:
cannam@95 842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@95 843 break;
cannam@95 844 case R2R_RODFT11:
cannam@95 845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@95 846 break;
cannam@95 847 default:
cannam@95 848 BENCH_ASSERT(0); /* not yet implemented */
cannam@95 849 }
cannam@95 850
cannam@95 851 after_problem_rcopy_from(p, ri);
cannam@95 852 doit(1, p);
cannam@95 853 after_problem_rcopy_to(p, ro);
cannam@95 854
cannam@95 855 switch (p->k[0]) {
cannam@95 856 case R2R_R2HC:
cannam@95 857 if (k->k.recopy_input)
cannam@95 858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@95 859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
cannam@95 860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
cannam@95 861 c_im(out[0]) = 0.0;
cannam@95 862 if (n % 2 == 0)
cannam@95 863 c_im(out[n/2]) = 0.0;
cannam@95 864 mkhermitian1(out, n);
cannam@95 865 break;
cannam@95 866 case R2R_HC2R:
cannam@95 867 if (k->k.recopy_input) {
cannam@95 868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
cannam@95 869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
cannam@95 870 }
cannam@95 871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@95 872 mkreal(out, n);
cannam@95 873 break;
cannam@95 874 case R2R_REDFT00:
cannam@95 875 if (k->k.recopy_input)
cannam@95 876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@95 877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@95 878 mkre00(out, k->n0);
cannam@95 879 break;
cannam@95 880 case R2R_RODFT00:
cannam@95 881 if (k->k.recopy_input)
cannam@95 882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
cannam@95 883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
cannam@95 884 mkio00(out, k->n0);
cannam@95 885 break;
cannam@95 886 case R2R_REDFT01:
cannam@95 887 if (k->k.recopy_input)
cannam@95 888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@95 889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
cannam@95 890 mkre10(out, k->n0);
cannam@95 891 break;
cannam@95 892 case R2R_REDFT10:
cannam@95 893 if (k->k.recopy_input)
cannam@95 894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cannam@95 895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@95 896 mkre01(out, k->n0);
cannam@95 897 break;
cannam@95 898 case R2R_RODFT01:
cannam@95 899 if (k->k.recopy_input)
cannam@95 900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
cannam@95 901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
cannam@95 902 mkio10(out, k->n0);
cannam@95 903 break;
cannam@95 904 case R2R_RODFT10:
cannam@95 905 if (k->k.recopy_input)
cannam@95 906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cannam@95 907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
cannam@95 908 mkro01(out, k->n0);
cannam@95 909 break;
cannam@95 910 case R2R_REDFT11:
cannam@95 911 if (k->k.recopy_input)
cannam@95 912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cannam@95 913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
cannam@95 914 mkre11(out, k->n0);
cannam@95 915 break;
cannam@95 916 case R2R_RODFT11:
cannam@95 917 if (k->k.recopy_input)
cannam@95 918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cannam@95 919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
cannam@95 920 mkio11(out, k->n0);
cannam@95 921 break;
cannam@95 922 default:
cannam@95 923 BENCH_ASSERT(0); /* not yet implemented */
cannam@95 924 }
cannam@95 925 }
cannam@95 926
cannam@95 927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
cannam@95 928 double t[6])
cannam@95 929 {
cannam@95 930 dofft_r2r_closure k;
cannam@95 931 int n, n0 = 1;
cannam@95 932 C *a, *b;
cannam@95 933 aconstrain constrain = 0;
cannam@95 934
cannam@95 935 BENCH_ASSERT(p->kind == PROBLEM_R2R);
cannam@95 936 BENCH_ASSERT(p->sz->rnk == 1);
cannam@95 937 BENCH_ASSERT(p->vecsz->rnk == 0);
cannam@95 938
cannam@95 939 k.k.apply = r2r_apply;
cannam@95 940 k.k.recopy_input = 0;
cannam@95 941 k.p = p;
cannam@95 942 n = tensor_sz(p->sz);
cannam@95 943
cannam@95 944 switch (p->k[0]) {
cannam@95 945 case R2R_R2HC: constrain = mkreal; n0 = n; break;
cannam@95 946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
cannam@95 947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
cannam@95 948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
cannam@95 949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
cannam@95 950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
cannam@95 951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
cannam@95 952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
cannam@95 953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
cannam@95 954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
cannam@95 955 default: BENCH_ASSERT(0); /* not yet implemented */
cannam@95 956 }
cannam@95 957 k.n0 = n0;
cannam@95 958
cannam@95 959 a = (C *) bench_malloc(n0 * sizeof(C));
cannam@95 960 b = (C *) bench_malloc(n0 * sizeof(C));
cannam@95 961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
cannam@95 962 bench_free(b);
cannam@95 963 bench_free(a);
cannam@95 964 }