annotate src/fftw-3.3.3/dft/simd/common/t3fv_10.c @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:38:55 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include t3f.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 57 FP additions, 52 FP multiplications,
cannam@95 32 * (or, 39 additions, 34 multiplications, 18 fused multiply/add),
cannam@95 33 * 57 stack variables, 4 constants, and 20 memory accesses
cannam@95 34 */
cannam@95 35 #include "t3f.h"
cannam@95 36
cannam@95 37 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@95 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@95 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 43 {
cannam@95 44 INT m;
cannam@95 45 R *x;
cannam@95 46 x = ri;
cannam@95 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@95 48 V T1, T7, Th, Tx, Tr, Td, Tp, T6, Tv, Tc, Te, Ti, Tl, T2, T3;
cannam@95 49 V T5;
cannam@95 50 T2 = LDW(&(W[0]));
cannam@95 51 T3 = LDW(&(W[TWVL * 2]));
cannam@95 52 T5 = LDW(&(W[TWVL * 4]));
cannam@95 53 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 54 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 55 {
cannam@95 56 V To, Tw, Tq, Tu, Ta, T4, Tt, Tk, Tb;
cannam@95 57 To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 58 Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 59 Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 60 Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 61 Ta = VZMULJ(T2, T3);
cannam@95 62 T4 = VZMUL(T2, T3);
cannam@95 63 Th = VZMULJ(T2, T5);
cannam@95 64 Tt = VZMULJ(T3, T5);
cannam@95 65 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 66 Tx = VZMULJ(T2, Tw);
cannam@95 67 Tr = VZMULJ(T5, Tq);
cannam@95 68 Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 69 Td = VZMULJ(Ta, T5);
cannam@95 70 Tp = VZMULJ(T4, To);
cannam@95 71 T6 = VZMULJ(T4, T5);
cannam@95 72 Tv = VZMULJ(Tt, Tu);
cannam@95 73 Tc = VZMULJ(Ta, Tb);
cannam@95 74 Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 75 Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 76 Tl = VZMULJ(T3, Tk);
cannam@95 77 }
cannam@95 78 {
cannam@95 79 V TN, Ts, T8, Ty, TO, Tf, Tj;
cannam@95 80 TN = VADD(Tp, Tr);
cannam@95 81 Ts = VSUB(Tp, Tr);
cannam@95 82 T8 = VZMULJ(T6, T7);
cannam@95 83 Ty = VSUB(Tv, Tx);
cannam@95 84 TO = VADD(Tv, Tx);
cannam@95 85 Tf = VZMULJ(Td, Te);
cannam@95 86 Tj = VZMULJ(Th, Ti);
cannam@95 87 {
cannam@95 88 V T9, TJ, TP, TU, Tz, TF, Tg, TK, Tm, TL;
cannam@95 89 T9 = VSUB(T1, T8);
cannam@95 90 TJ = VADD(T1, T8);
cannam@95 91 TP = VADD(TN, TO);
cannam@95 92 TU = VSUB(TN, TO);
cannam@95 93 Tz = VADD(Ts, Ty);
cannam@95 94 TF = VSUB(Ts, Ty);
cannam@95 95 Tg = VSUB(Tc, Tf);
cannam@95 96 TK = VADD(Tc, Tf);
cannam@95 97 Tm = VSUB(Tj, Tl);
cannam@95 98 TL = VADD(Tj, Tl);
cannam@95 99 {
cannam@95 100 V TM, TV, Tn, TE;
cannam@95 101 TM = VADD(TK, TL);
cannam@95 102 TV = VSUB(TK, TL);
cannam@95 103 Tn = VADD(Tg, Tm);
cannam@95 104 TE = VSUB(Tg, Tm);
cannam@95 105 {
cannam@95 106 V TW, TY, TS, TQ, TG, TI, TC, TA, TR, TB;
cannam@95 107 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
cannam@95 108 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
cannam@95 109 TS = VSUB(TM, TP);
cannam@95 110 TQ = VADD(TM, TP);
cannam@95 111 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
cannam@95 112 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
cannam@95 113 TC = VSUB(Tn, Tz);
cannam@95 114 TA = VADD(Tn, Tz);
cannam@95 115 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
cannam@95 116 TR = VFNMS(LDK(KP250000000), TQ, TJ);
cannam@95 117 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
cannam@95 118 TB = VFNMS(LDK(KP250000000), TA, T9);
cannam@95 119 {
cannam@95 120 V TX, TT, TH, TD;
cannam@95 121 TX = VFMA(LDK(KP559016994), TS, TR);
cannam@95 122 TT = VFNMS(LDK(KP559016994), TS, TR);
cannam@95 123 TH = VFNMS(LDK(KP559016994), TC, TB);
cannam@95 124 TD = VFMA(LDK(KP559016994), TC, TB);
cannam@95 125 ST(&(x[WS(rs, 8)]), VFNMSI(TW, TT), ms, &(x[0]));
cannam@95 126 ST(&(x[WS(rs, 2)]), VFMAI(TW, TT), ms, &(x[0]));
cannam@95 127 ST(&(x[WS(rs, 6)]), VFNMSI(TY, TX), ms, &(x[0]));
cannam@95 128 ST(&(x[WS(rs, 4)]), VFMAI(TY, TX), ms, &(x[0]));
cannam@95 129 ST(&(x[WS(rs, 9)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
cannam@95 130 ST(&(x[WS(rs, 1)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
cannam@95 131 ST(&(x[WS(rs, 7)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
cannam@95 132 ST(&(x[WS(rs, 3)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
cannam@95 133 }
cannam@95 134 }
cannam@95 135 }
cannam@95 136 }
cannam@95 137 }
cannam@95 138 }
cannam@95 139 }
cannam@95 140 VLEAVE();
cannam@95 141 }
cannam@95 142
cannam@95 143 static const tw_instr twinstr[] = {
cannam@95 144 VTW(0, 1),
cannam@95 145 VTW(0, 3),
cannam@95 146 VTW(0, 9),
cannam@95 147 {TW_NEXT, VL, 0}
cannam@95 148 };
cannam@95 149
cannam@95 150 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 };
cannam@95 151
cannam@95 152 void XSIMD(codelet_t3fv_10) (planner *p) {
cannam@95 153 X(kdft_dit_register) (p, t3fv_10, &desc);
cannam@95 154 }
cannam@95 155 #else /* HAVE_FMA */
cannam@95 156
cannam@95 157 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include t3f.h */
cannam@95 158
cannam@95 159 /*
cannam@95 160 * This function contains 57 FP additions, 42 FP multiplications,
cannam@95 161 * (or, 51 additions, 36 multiplications, 6 fused multiply/add),
cannam@95 162 * 41 stack variables, 4 constants, and 20 memory accesses
cannam@95 163 */
cannam@95 164 #include "t3f.h"
cannam@95 165
cannam@95 166 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 167 {
cannam@95 168 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@95 169 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 170 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 171 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@95 172 {
cannam@95 173 INT m;
cannam@95 174 R *x;
cannam@95 175 x = ri;
cannam@95 176 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@95 177 V T1, T2, T3, Ti, T6, T7, Tx, Tb, To;
cannam@95 178 T1 = LDW(&(W[0]));
cannam@95 179 T2 = LDW(&(W[TWVL * 2]));
cannam@95 180 T3 = VZMULJ(T1, T2);
cannam@95 181 Ti = VZMUL(T1, T2);
cannam@95 182 T6 = LDW(&(W[TWVL * 4]));
cannam@95 183 T7 = VZMULJ(T3, T6);
cannam@95 184 Tx = VZMULJ(Ti, T6);
cannam@95 185 Tb = VZMULJ(T1, T6);
cannam@95 186 To = VZMULJ(T2, T6);
cannam@95 187 {
cannam@95 188 V TA, TQ, Tn, Tt, Tu, TJ, TK, TS, Ta, Tg, Th, TM, TN, TR, Tw;
cannam@95 189 V Tz, Ty;
cannam@95 190 Tw = LD(&(x[0]), ms, &(x[0]));
cannam@95 191 Ty = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 192 Tz = VZMULJ(Tx, Ty);
cannam@95 193 TA = VSUB(Tw, Tz);
cannam@95 194 TQ = VADD(Tw, Tz);
cannam@95 195 {
cannam@95 196 V Tk, Ts, Tm, Tq;
cannam@95 197 {
cannam@95 198 V Tj, Tr, Tl, Tp;
cannam@95 199 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 200 Tk = VZMULJ(Ti, Tj);
cannam@95 201 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 202 Ts = VZMULJ(T1, Tr);
cannam@95 203 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 204 Tm = VZMULJ(T6, Tl);
cannam@95 205 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 206 Tq = VZMULJ(To, Tp);
cannam@95 207 }
cannam@95 208 Tn = VSUB(Tk, Tm);
cannam@95 209 Tt = VSUB(Tq, Ts);
cannam@95 210 Tu = VADD(Tn, Tt);
cannam@95 211 TJ = VADD(Tk, Tm);
cannam@95 212 TK = VADD(Tq, Ts);
cannam@95 213 TS = VADD(TJ, TK);
cannam@95 214 }
cannam@95 215 {
cannam@95 216 V T5, Tf, T9, Td;
cannam@95 217 {
cannam@95 218 V T4, Te, T8, Tc;
cannam@95 219 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 220 T5 = VZMULJ(T3, T4);
cannam@95 221 Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 222 Tf = VZMULJ(T2, Te);
cannam@95 223 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 224 T9 = VZMULJ(T7, T8);
cannam@95 225 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 226 Td = VZMULJ(Tb, Tc);
cannam@95 227 }
cannam@95 228 Ta = VSUB(T5, T9);
cannam@95 229 Tg = VSUB(Td, Tf);
cannam@95 230 Th = VADD(Ta, Tg);
cannam@95 231 TM = VADD(T5, T9);
cannam@95 232 TN = VADD(Td, Tf);
cannam@95 233 TR = VADD(TM, TN);
cannam@95 234 }
cannam@95 235 {
cannam@95 236 V Tv, TB, TC, TG, TI, TE, TF, TH, TD;
cannam@95 237 Tv = VMUL(LDK(KP559016994), VSUB(Th, Tu));
cannam@95 238 TB = VADD(Th, Tu);
cannam@95 239 TC = VFNMS(LDK(KP250000000), TB, TA);
cannam@95 240 TE = VSUB(Ta, Tg);
cannam@95 241 TF = VSUB(Tn, Tt);
cannam@95 242 TG = VBYI(VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TF)));
cannam@95 243 TI = VBYI(VFNMS(LDK(KP587785252), TE, VMUL(LDK(KP951056516), TF)));
cannam@95 244 ST(&(x[WS(rs, 5)]), VADD(TA, TB), ms, &(x[WS(rs, 1)]));
cannam@95 245 TH = VSUB(TC, Tv);
cannam@95 246 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
cannam@95 247 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
cannam@95 248 TD = VADD(Tv, TC);
cannam@95 249 ST(&(x[WS(rs, 1)]), VSUB(TD, TG), ms, &(x[WS(rs, 1)]));
cannam@95 250 ST(&(x[WS(rs, 9)]), VADD(TG, TD), ms, &(x[WS(rs, 1)]));
cannam@95 251 }
cannam@95 252 {
cannam@95 253 V TV, TT, TU, TP, TX, TL, TO, TY, TW;
cannam@95 254 TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
cannam@95 255 TT = VADD(TR, TS);
cannam@95 256 TU = VFNMS(LDK(KP250000000), TT, TQ);
cannam@95 257 TL = VSUB(TJ, TK);
cannam@95 258 TO = VSUB(TM, TN);
cannam@95 259 TP = VBYI(VFNMS(LDK(KP587785252), TO, VMUL(LDK(KP951056516), TL)));
cannam@95 260 TX = VBYI(VFMA(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
cannam@95 261 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
cannam@95 262 TY = VADD(TV, TU);
cannam@95 263 ST(&(x[WS(rs, 4)]), VADD(TX, TY), ms, &(x[0]));
cannam@95 264 ST(&(x[WS(rs, 6)]), VSUB(TY, TX), ms, &(x[0]));
cannam@95 265 TW = VSUB(TU, TV);
cannam@95 266 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
cannam@95 267 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
cannam@95 268 }
cannam@95 269 }
cannam@95 270 }
cannam@95 271 }
cannam@95 272 VLEAVE();
cannam@95 273 }
cannam@95 274
cannam@95 275 static const tw_instr twinstr[] = {
cannam@95 276 VTW(0, 1),
cannam@95 277 VTW(0, 3),
cannam@95 278 VTW(0, 9),
cannam@95 279 {TW_NEXT, VL, 0}
cannam@95 280 };
cannam@95 281
cannam@95 282 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 };
cannam@95 283
cannam@95 284 void XSIMD(codelet_t3fv_10) (planner *p) {
cannam@95 285 X(kdft_dit_register) (p, t3fv_10, &desc);
cannam@95 286 }
cannam@95 287 #endif /* HAVE_FMA */