annotate src/fftw-3.3.3/dft/simd/common/n1bv_12.c @ 120:c9cf28b398fb

Add win64-mingw builds
author Chris Cannam <cannam@all-day-breakfast.com>
date Thu, 30 Oct 2014 17:29:41 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:37:02 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 48 FP additions, 20 FP multiplications,
cannam@95 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
cannam@95 33 * 49 stack variables, 2 constants, and 24 memory accesses
cannam@95 34 */
cannam@95 35 #include "n1b.h"
cannam@95 36
cannam@95 37 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@95 38 {
cannam@95 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 41 {
cannam@95 42 INT i;
cannam@95 43 const R *xi;
cannam@95 44 R *xo;
cannam@95 45 xi = ii;
cannam@95 46 xo = io;
cannam@95 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@95 48 V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
cannam@95 49 {
cannam@95 50 V T2, T3, T7, T8;
cannam@95 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@95 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@95 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@95 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@95 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@95 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@95 57 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@95 58 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@95 59 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@95 60 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@95 61 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@95 62 Tz = VSUB(T2, T3);
cannam@95 63 T4 = VADD(T2, T3);
cannam@95 64 TA = VSUB(T7, T8);
cannam@95 65 T9 = VADD(T7, T8);
cannam@95 66 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@95 67 }
cannam@95 68 Tf = VADD(Td, Te);
cannam@95 69 Tw = VSUB(Td, Te);
cannam@95 70 {
cannam@95 71 V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
cannam@95 72 T5 = VADD(T1, T4);
cannam@95 73 Tp = VFNMS(LDK(KP500000000), T4, T1);
cannam@95 74 TJ = VSUB(Tz, TA);
cannam@95 75 TB = VADD(Tz, TA);
cannam@95 76 Ta = VADD(T6, T9);
cannam@95 77 Tq = VFNMS(LDK(KP500000000), T9, T6);
cannam@95 78 Tk = VADD(Ti, Tj);
cannam@95 79 Tx = VSUB(Tj, Ti);
cannam@95 80 Tg = VADD(Tc, Tf);
cannam@95 81 Ts = VFNMS(LDK(KP500000000), Tf, Tc);
cannam@95 82 {
cannam@95 83 V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
cannam@95 84 Tr = VADD(Tp, Tq);
cannam@95 85 TF = VSUB(Tp, Tq);
cannam@95 86 Tb = VSUB(T5, Ta);
cannam@95 87 Tn = VADD(T5, Ta);
cannam@95 88 TG = VADD(Tw, Tx);
cannam@95 89 Ty = VSUB(Tw, Tx);
cannam@95 90 Tl = VADD(Th, Tk);
cannam@95 91 Tt = VFNMS(LDK(KP500000000), Tk, Th);
cannam@95 92 {
cannam@95 93 V TC, TE, TH, TL, Tu, TI, Tm, To;
cannam@95 94 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
cannam@95 95 TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
cannam@95 96 TH = VFNMS(LDK(KP866025403), TG, TF);
cannam@95 97 TL = VFMA(LDK(KP866025403), TG, TF);
cannam@95 98 Tu = VADD(Ts, Tt);
cannam@95 99 TI = VSUB(Ts, Tt);
cannam@95 100 Tm = VSUB(Tg, Tl);
cannam@95 101 To = VADD(Tg, Tl);
cannam@95 102 {
cannam@95 103 V TK, TM, Tv, TD;
cannam@95 104 TK = VFMA(LDK(KP866025403), TJ, TI);
cannam@95 105 TM = VFNMS(LDK(KP866025403), TJ, TI);
cannam@95 106 Tv = VSUB(Tr, Tu);
cannam@95 107 TD = VADD(Tr, Tu);
cannam@95 108 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
cannam@95 109 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
cannam@95 110 ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
cannam@95 111 ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
cannam@95 112 ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
cannam@95 113 ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
cannam@95 114 ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@95 115 ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@95 116 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
cannam@95 117 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
cannam@95 118 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
cannam@95 119 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
cannam@95 120 }
cannam@95 121 }
cannam@95 122 }
cannam@95 123 }
cannam@95 124 }
cannam@95 125 }
cannam@95 126 VLEAVE();
cannam@95 127 }
cannam@95 128
cannam@95 129 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
cannam@95 130
cannam@95 131 void XSIMD(codelet_n1bv_12) (planner *p) {
cannam@95 132 X(kdft_register) (p, n1bv_12, &desc);
cannam@95 133 }
cannam@95 134
cannam@95 135 #else /* HAVE_FMA */
cannam@95 136
cannam@95 137 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
cannam@95 138
cannam@95 139 /*
cannam@95 140 * This function contains 48 FP additions, 8 FP multiplications,
cannam@95 141 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
cannam@95 142 * 27 stack variables, 2 constants, and 24 memory accesses
cannam@95 143 */
cannam@95 144 #include "n1b.h"
cannam@95 145
cannam@95 146 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@95 147 {
cannam@95 148 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 149 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 150 {
cannam@95 151 INT i;
cannam@95 152 const R *xi;
cannam@95 153 R *xo;
cannam@95 154 xi = ii;
cannam@95 155 xo = io;
cannam@95 156 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@95 157 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
cannam@95 158 {
cannam@95 159 V T1, T6, T4, Tk, T9, Tl;
cannam@95 160 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@95 161 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@95 162 {
cannam@95 163 V T2, T3, T7, T8;
cannam@95 164 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@95 165 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@95 166 T4 = VADD(T2, T3);
cannam@95 167 Tk = VSUB(T2, T3);
cannam@95 168 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@95 169 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@95 170 T9 = VADD(T7, T8);
cannam@95 171 Tl = VSUB(T7, T8);
cannam@95 172 }
cannam@95 173 T5 = VFNMS(LDK(KP500000000), T4, T1);
cannam@95 174 Ta = VFNMS(LDK(KP500000000), T9, T6);
cannam@95 175 TG = VADD(T6, T9);
cannam@95 176 TF = VADD(T1, T4);
cannam@95 177 Ty = VADD(Tk, Tl);
cannam@95 178 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
cannam@95 179 }
cannam@95 180 {
cannam@95 181 V Tn, Tq, Te, To, Th, Tr;
cannam@95 182 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@95 183 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@95 184 {
cannam@95 185 V Tc, Td, Tf, Tg;
cannam@95 186 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@95 187 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@95 188 Te = VSUB(Tc, Td);
cannam@95 189 To = VADD(Tc, Td);
cannam@95 190 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@95 191 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@95 192 Th = VSUB(Tf, Tg);
cannam@95 193 Tr = VADD(Tf, Tg);
cannam@95 194 }
cannam@95 195 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
cannam@95 196 Tp = VFNMS(LDK(KP500000000), To, Tn);
cannam@95 197 TJ = VADD(Tq, Tr);
cannam@95 198 TI = VADD(Tn, To);
cannam@95 199 Tx = VADD(Te, Th);
cannam@95 200 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
cannam@95 201 }
cannam@95 202 {
cannam@95 203 V TH, TK, TL, TM;
cannam@95 204 TH = VSUB(TF, TG);
cannam@95 205 TK = VBYI(VSUB(TI, TJ));
cannam@95 206 ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
cannam@95 207 ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
cannam@95 208 TL = VADD(TF, TG);
cannam@95 209 TM = VADD(TI, TJ);
cannam@95 210 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
cannam@95 211 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
cannam@95 212 }
cannam@95 213 {
cannam@95 214 V Tj, Tv, Tu, Tw, Tb, Tt;
cannam@95 215 Tb = VSUB(T5, Ta);
cannam@95 216 Tj = VSUB(Tb, Ti);
cannam@95 217 Tv = VADD(Tb, Ti);
cannam@95 218 Tt = VSUB(Tp, Ts);
cannam@95 219 Tu = VBYI(VADD(Tm, Tt));
cannam@95 220 Tw = VBYI(VSUB(Tt, Tm));
cannam@95 221 ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
cannam@95 222 ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
cannam@95 223 ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
cannam@95 224 ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
cannam@95 225 }
cannam@95 226 {
cannam@95 227 V Tz, TD, TC, TE, TA, TB;
cannam@95 228 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
cannam@95 229 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
cannam@95 230 TA = VADD(T5, Ta);
cannam@95 231 TB = VADD(Tp, Ts);
cannam@95 232 TC = VSUB(TA, TB);
cannam@95 233 TE = VADD(TA, TB);
cannam@95 234 ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
cannam@95 235 ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
cannam@95 236 ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
cannam@95 237 ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
cannam@95 238 }
cannam@95 239 }
cannam@95 240 }
cannam@95 241 VLEAVE();
cannam@95 242 }
cannam@95 243
cannam@95 244 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
cannam@95 245
cannam@95 246 void XSIMD(codelet_n1bv_12) (planner *p) {
cannam@95 247 X(kdft_register) (p, n1bv_12, &desc);
cannam@95 248 }
cannam@95 249
cannam@95 250 #endif /* HAVE_FMA */