annotate src/fftw-3.3.3/dft/simd/codlist.mk @ 105:c83a7e2af39c

Ranlib
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 25 Mar 2013 16:28:19 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 # This file contains a standard list of DFT SIMD codelets. It is
cannam@95 2 # included by common/Makefile to generate the C files with the actual
cannam@95 3 # codelets in them. It is included by {sse,sse2,...}/Makefile to
cannam@95 4 # generate and compile stub files that include common/*.c
cannam@95 5
cannam@95 6 # You can customize FFTW for special needs, e.g. to handle certain
cannam@95 7 # sizes more efficiently, by adding new codelets to the lists of those
cannam@95 8 # included by default. If you change the list of codelets, any new
cannam@95 9 # ones you added will be automatically generated when you run the
cannam@95 10 # bootstrap script (see "Generating your own code" in the FFTW
cannam@95 11 # manual).
cannam@95 12
cannam@95 13 ###########################################################################
cannam@95 14 # n1fv_<n> is a hard-coded FFTW_FORWARD FFT of size <n>, using SIMD
cannam@95 15 N1F = n1fv_2.c n1fv_3.c n1fv_4.c n1fv_5.c n1fv_6.c n1fv_7.c n1fv_8.c \
cannam@95 16 n1fv_9.c n1fv_10.c n1fv_11.c n1fv_12.c n1fv_13.c n1fv_14.c n1fv_15.c \
cannam@95 17 n1fv_16.c n1fv_32.c n1fv_64.c n1fv_128.c n1fv_20.c n1fv_25.c
cannam@95 18
cannam@95 19 # as above, with restricted input vector stride
cannam@95 20 N2F = n2fv_2.c n2fv_4.c n2fv_6.c n2fv_8.c n2fv_10.c n2fv_12.c \
cannam@95 21 n2fv_14.c n2fv_16.c n2fv_32.c n2fv_64.c n2fv_20.c
cannam@95 22
cannam@95 23 # as above, but FFTW_BACKWARD
cannam@95 24 N1B = n1bv_2.c n1bv_3.c n1bv_4.c n1bv_5.c n1bv_6.c n1bv_7.c n1bv_8.c \
cannam@95 25 n1bv_9.c n1bv_10.c n1bv_11.c n1bv_12.c n1bv_13.c n1bv_14.c n1bv_15.c \
cannam@95 26 n1bv_16.c n1bv_32.c n1bv_64.c n1bv_128.c n1bv_20.c n1bv_25.c
cannam@95 27
cannam@95 28 N2B = n2bv_2.c n2bv_4.c n2bv_6.c n2bv_8.c n2bv_10.c n2bv_12.c \
cannam@95 29 n2bv_14.c n2bv_16.c n2bv_32.c n2bv_64.c n2bv_20.c
cannam@95 30
cannam@95 31 # split-complex codelets
cannam@95 32 N2S = n2sv_4.c n2sv_8.c n2sv_16.c n2sv_32.c n2sv_64.c
cannam@95 33
cannam@95 34 ###########################################################################
cannam@95 35 # t1fv_<r> is a "twiddle" FFT of size <r>, implementing a radix-r DIT step
cannam@95 36 # for an FFTW_FORWARD transform, using SIMD
cannam@95 37 T1F = t1fv_2.c t1fv_3.c t1fv_4.c t1fv_5.c t1fv_6.c t1fv_7.c t1fv_8.c \
cannam@95 38 t1fv_9.c t1fv_10.c t1fv_12.c t1fv_15.c t1fv_16.c t1fv_32.c t1fv_64.c \
cannam@95 39 t1fv_20.c t1fv_25.c
cannam@95 40
cannam@95 41 # same as t1fv_*, but with different twiddle storage scheme
cannam@95 42 T2F = t2fv_2.c t2fv_4.c t2fv_8.c t2fv_16.c t2fv_32.c t2fv_64.c \
cannam@95 43 t2fv_5.c t2fv_10.c t2fv_20.c t2fv_25.c
cannam@95 44 T3F = t3fv_4.c t3fv_8.c t3fv_16.c t3fv_32.c t3fv_5.c t3fv_10.c \
cannam@95 45 t3fv_20.c t3fv_25.c
cannam@95 46 T1FU = t1fuv_2.c t1fuv_3.c t1fuv_4.c t1fuv_5.c t1fuv_6.c t1fuv_7.c \
cannam@95 47 t1fuv_8.c t1fuv_9.c t1fuv_10.c
cannam@95 48
cannam@95 49 # as above, but FFTW_BACKWARD
cannam@95 50 T1B = t1bv_2.c t1bv_3.c t1bv_4.c t1bv_5.c t1bv_6.c t1bv_7.c t1bv_8.c \
cannam@95 51 t1bv_9.c t1bv_10.c t1bv_12.c t1bv_15.c t1bv_16.c t1bv_32.c t1bv_64.c \
cannam@95 52 t1bv_20.c t1bv_25.c
cannam@95 53
cannam@95 54 # same as t1bv_*, but with different twiddle storage scheme
cannam@95 55 T2B = t2bv_2.c t2bv_4.c t2bv_8.c t2bv_16.c t2bv_32.c t2bv_64.c \
cannam@95 56 t2bv_5.c t2bv_10.c t2bv_20.c t2bv_25.c
cannam@95 57 T3B = t3bv_4.c t3bv_8.c t3bv_16.c t3bv_32.c t3bv_5.c t3bv_10.c \
cannam@95 58 t3bv_20.c t3bv_25.c
cannam@95 59 T1BU = t1buv_2.c t1buv_3.c t1buv_4.c t1buv_5.c t1buv_6.c t1buv_7.c \
cannam@95 60 t1buv_8.c t1buv_9.c t1buv_10.c
cannam@95 61
cannam@95 62 # split-complex codelets
cannam@95 63 T1S = t1sv_2.c t1sv_4.c t1sv_8.c t1sv_16.c t1sv_32.c
cannam@95 64 T2S = t2sv_4.c t2sv_8.c t2sv_16.c t2sv_32.c
cannam@95 65
cannam@95 66 ###########################################################################
cannam@95 67 # q1fv_<r> is <r> twiddle FFTW_FORWARD FFTs of size <r> (DIF step),
cannam@95 68 # where the output is transposed, using SIMD. This is used for
cannam@95 69 # in-place transposes in sizes that are divisible by <r>^2. These
cannam@95 70 # codelets have size ~ <r>^2, so you should probably not use <r>
cannam@95 71 # bigger than 8 or so.
cannam@95 72 Q1F = q1fv_2.c q1fv_4.c q1fv_5.c q1fv_8.c
cannam@95 73
cannam@95 74 # as above, but FFTW_BACKWARD
cannam@95 75 Q1B = q1bv_2.c q1bv_4.c q1bv_5.c q1bv_8.c
cannam@95 76
cannam@95 77 ###########################################################################
cannam@95 78 SIMD_CODELETS = $(N1F) $(N1B) $(N2F) $(N2B) $(N2S) $(T1FU) $(T1F) \
cannam@95 79 $(T2F) $(T3F) $(T1BU) $(T1B) $(T2B) $(T3B) $(T1S) $(T2S) $(Q1F) $(Q1B)