annotate src/fftw-3.3.5/kernel/tensor7.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 #include "ifftw.h"
cannam@127 23
cannam@127 24 static int signof(INT x)
cannam@127 25 {
cannam@127 26 if (x < 0) return -1;
cannam@127 27 if (x == 0) return 0;
cannam@127 28 /* if (x > 0) */ return 1;
cannam@127 29 }
cannam@127 30
cannam@127 31 /* total order among iodim's */
cannam@127 32 int X(dimcmp)(const iodim *a, const iodim *b)
cannam@127 33 {
cannam@127 34 INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
cannam@127 35 INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os);
cannam@127 36 INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo);
cannam@127 37
cannam@127 38 /* in descending order of min{istride, ostride} */
cannam@127 39 if (sam != sbm)
cannam@127 40 return signof(sbm - sam);
cannam@127 41
cannam@127 42 /* in case of a tie, in descending order of istride */
cannam@127 43 if (sbi != sai)
cannam@127 44 return signof(sbi - sai);
cannam@127 45
cannam@127 46 /* in case of a tie, in descending order of ostride */
cannam@127 47 if (sbo != sao)
cannam@127 48 return signof(sbo - sao);
cannam@127 49
cannam@127 50 /* in case of a tie, in ascending order of n */
cannam@127 51 return signof(a->n - b->n);
cannam@127 52 }
cannam@127 53
cannam@127 54 static void canonicalize(tensor *x)
cannam@127 55 {
cannam@127 56 if (x->rnk > 1) {
cannam@127 57 qsort(x->dims, (unsigned)x->rnk, sizeof(iodim),
cannam@127 58 (int (*)(const void *, const void *))X(dimcmp));
cannam@127 59 }
cannam@127 60 }
cannam@127 61
cannam@127 62 static int compare_by_istride(const iodim *a, const iodim *b)
cannam@127 63 {
cannam@127 64 INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
cannam@127 65
cannam@127 66 /* in descending order of istride */
cannam@127 67 return signof(sbi - sai);
cannam@127 68 }
cannam@127 69
cannam@127 70 static tensor *really_compress(const tensor *sz)
cannam@127 71 {
cannam@127 72 int i, rnk;
cannam@127 73 tensor *x;
cannam@127 74
cannam@127 75 A(FINITE_RNK(sz->rnk));
cannam@127 76 for (i = rnk = 0; i < sz->rnk; ++i) {
cannam@127 77 A(sz->dims[i].n > 0);
cannam@127 78 if (sz->dims[i].n != 1)
cannam@127 79 ++rnk;
cannam@127 80 }
cannam@127 81
cannam@127 82 x = X(mktensor)(rnk);
cannam@127 83 for (i = rnk = 0; i < sz->rnk; ++i) {
cannam@127 84 if (sz->dims[i].n != 1)
cannam@127 85 x->dims[rnk++] = sz->dims[i];
cannam@127 86 }
cannam@127 87 return x;
cannam@127 88 }
cannam@127 89
cannam@127 90 /* Like tensor_copy, but eliminate n == 1 dimensions, which
cannam@127 91 never affect any transform or transform vector.
cannam@127 92
cannam@127 93 Also, we sort the tensor into a canonical order of decreasing
cannam@127 94 strides (see X(dimcmp) for an exact definition). In general,
cannam@127 95 processing a loop/array in order of decreasing stride will improve
cannam@127 96 locality. Both forward and backwards traversal of the tensor are
cannam@127 97 considered e.g. by vrank-geq1, so sorting in increasing
cannam@127 98 vs. decreasing order is not really important. */
cannam@127 99 tensor *X(tensor_compress)(const tensor *sz)
cannam@127 100 {
cannam@127 101 tensor *x = really_compress(sz);
cannam@127 102 canonicalize(x);
cannam@127 103 return x;
cannam@127 104 }
cannam@127 105
cannam@127 106 /* Return whether the strides of a and b are such that they form an
cannam@127 107 effective contiguous 1d array. Assumes that a.is >= b.is. */
cannam@127 108 static int strides_contig(iodim *a, iodim *b)
cannam@127 109 {
cannam@127 110 return (a->is == b->is * b->n && a->os == b->os * b->n);
cannam@127 111 }
cannam@127 112
cannam@127 113 /* Like tensor_compress, but also compress into one dimension any
cannam@127 114 group of dimensions that form a contiguous block of indices with
cannam@127 115 some stride. (This can safely be done for transform vector sizes.) */
cannam@127 116 tensor *X(tensor_compress_contiguous)(const tensor *sz)
cannam@127 117 {
cannam@127 118 int i, rnk;
cannam@127 119 tensor *sz2, *x;
cannam@127 120
cannam@127 121 if (X(tensor_sz)(sz) == 0)
cannam@127 122 return X(mktensor)(RNK_MINFTY);
cannam@127 123
cannam@127 124 sz2 = really_compress(sz);
cannam@127 125 A(FINITE_RNK(sz2->rnk));
cannam@127 126
cannam@127 127 if (sz2->rnk <= 1) { /* nothing to compress. */
cannam@127 128 if (0) {
cannam@127 129 /* this call is redundant, because "sz->rnk <= 1" implies
cannam@127 130 that the tensor is already canonical, but I am writing
cannam@127 131 it explicitly because "logically" we need to canonicalize
cannam@127 132 the tensor before returning. */
cannam@127 133 canonicalize(sz2);
cannam@127 134 }
cannam@127 135 return sz2;
cannam@127 136 }
cannam@127 137
cannam@127 138 /* sort in descending order of |istride|, so that compressible
cannam@127 139 dimensions appear contigously */
cannam@127 140 qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim),
cannam@127 141 (int (*)(const void *, const void *))compare_by_istride);
cannam@127 142
cannam@127 143 /* compute what the rank will be after compression */
cannam@127 144 for (i = rnk = 1; i < sz2->rnk; ++i)
cannam@127 145 if (!strides_contig(sz2->dims + i - 1, sz2->dims + i))
cannam@127 146 ++rnk;
cannam@127 147
cannam@127 148 /* merge adjacent dimensions whenever possible */
cannam@127 149 x = X(mktensor)(rnk);
cannam@127 150 x->dims[0] = sz2->dims[0];
cannam@127 151 for (i = rnk = 1; i < sz2->rnk; ++i) {
cannam@127 152 if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) {
cannam@127 153 x->dims[rnk - 1].n *= sz2->dims[i].n;
cannam@127 154 x->dims[rnk - 1].is = sz2->dims[i].is;
cannam@127 155 x->dims[rnk - 1].os = sz2->dims[i].os;
cannam@127 156 } else {
cannam@127 157 A(rnk < x->rnk);
cannam@127 158 x->dims[rnk++] = sz2->dims[i];
cannam@127 159 }
cannam@127 160 }
cannam@127 161
cannam@127 162 X(tensor_destroy)(sz2);
cannam@127 163
cannam@127 164 /* reduce to canonical form */
cannam@127 165 canonicalize(x);
cannam@127 166 return x;
cannam@127 167 }
cannam@127 168
cannam@127 169 /* The inverse of X(tensor_append): splits the sz tensor into
cannam@127 170 tensor a followed by tensor b, where a's rank is arnk. */
cannam@127 171 void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
cannam@127 172 {
cannam@127 173 A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));
cannam@127 174
cannam@127 175 *a = X(tensor_copy_sub)(sz, 0, arnk);
cannam@127 176 *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
cannam@127 177 }
cannam@127 178
cannam@127 179 /* TRUE if the two tensors are equal */
cannam@127 180 int X(tensor_equal)(const tensor *a, const tensor *b)
cannam@127 181 {
cannam@127 182 if (a->rnk != b->rnk)
cannam@127 183 return 0;
cannam@127 184
cannam@127 185 if (FINITE_RNK(a->rnk)) {
cannam@127 186 int i;
cannam@127 187 for (i = 0; i < a->rnk; ++i)
cannam@127 188 if (0
cannam@127 189 || a->dims[i].n != b->dims[i].n
cannam@127 190 || a->dims[i].is != b->dims[i].is
cannam@127 191 || a->dims[i].os != b->dims[i].os
cannam@127 192 )
cannam@127 193 return 0;
cannam@127 194 }
cannam@127 195
cannam@127 196 return 1;
cannam@127 197 }
cannam@127 198
cannam@127 199 /* TRUE if the sets of input and output locations described by
cannam@127 200 (append sz vecsz) are the same */
cannam@127 201 int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz)
cannam@127 202 {
cannam@127 203 tensor *t = X(tensor_append)(sz, vecsz);
cannam@127 204 tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS);
cannam@127 205 tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS);
cannam@127 206 tensor *tic = X(tensor_compress_contiguous)(ti);
cannam@127 207 tensor *toc = X(tensor_compress_contiguous)(to);
cannam@127 208
cannam@127 209 int retval = X(tensor_equal)(tic, toc);
cannam@127 210
cannam@127 211 X(tensor_destroy)(t);
cannam@127 212 X(tensor_destroy4)(ti, to, tic, toc);
cannam@127 213
cannam@127 214 return retval;
cannam@127 215 }