cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21
|
cannam@127
|
22 #include "ifftw.h"
|
cannam@127
|
23
|
cannam@127
|
24 static int signof(INT x)
|
cannam@127
|
25 {
|
cannam@127
|
26 if (x < 0) return -1;
|
cannam@127
|
27 if (x == 0) return 0;
|
cannam@127
|
28 /* if (x > 0) */ return 1;
|
cannam@127
|
29 }
|
cannam@127
|
30
|
cannam@127
|
31 /* total order among iodim's */
|
cannam@127
|
32 int X(dimcmp)(const iodim *a, const iodim *b)
|
cannam@127
|
33 {
|
cannam@127
|
34 INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
|
cannam@127
|
35 INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os);
|
cannam@127
|
36 INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo);
|
cannam@127
|
37
|
cannam@127
|
38 /* in descending order of min{istride, ostride} */
|
cannam@127
|
39 if (sam != sbm)
|
cannam@127
|
40 return signof(sbm - sam);
|
cannam@127
|
41
|
cannam@127
|
42 /* in case of a tie, in descending order of istride */
|
cannam@127
|
43 if (sbi != sai)
|
cannam@127
|
44 return signof(sbi - sai);
|
cannam@127
|
45
|
cannam@127
|
46 /* in case of a tie, in descending order of ostride */
|
cannam@127
|
47 if (sbo != sao)
|
cannam@127
|
48 return signof(sbo - sao);
|
cannam@127
|
49
|
cannam@127
|
50 /* in case of a tie, in ascending order of n */
|
cannam@127
|
51 return signof(a->n - b->n);
|
cannam@127
|
52 }
|
cannam@127
|
53
|
cannam@127
|
54 static void canonicalize(tensor *x)
|
cannam@127
|
55 {
|
cannam@127
|
56 if (x->rnk > 1) {
|
cannam@127
|
57 qsort(x->dims, (unsigned)x->rnk, sizeof(iodim),
|
cannam@127
|
58 (int (*)(const void *, const void *))X(dimcmp));
|
cannam@127
|
59 }
|
cannam@127
|
60 }
|
cannam@127
|
61
|
cannam@127
|
62 static int compare_by_istride(const iodim *a, const iodim *b)
|
cannam@127
|
63 {
|
cannam@127
|
64 INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
|
cannam@127
|
65
|
cannam@127
|
66 /* in descending order of istride */
|
cannam@127
|
67 return signof(sbi - sai);
|
cannam@127
|
68 }
|
cannam@127
|
69
|
cannam@127
|
70 static tensor *really_compress(const tensor *sz)
|
cannam@127
|
71 {
|
cannam@127
|
72 int i, rnk;
|
cannam@127
|
73 tensor *x;
|
cannam@127
|
74
|
cannam@127
|
75 A(FINITE_RNK(sz->rnk));
|
cannam@127
|
76 for (i = rnk = 0; i < sz->rnk; ++i) {
|
cannam@127
|
77 A(sz->dims[i].n > 0);
|
cannam@127
|
78 if (sz->dims[i].n != 1)
|
cannam@127
|
79 ++rnk;
|
cannam@127
|
80 }
|
cannam@127
|
81
|
cannam@127
|
82 x = X(mktensor)(rnk);
|
cannam@127
|
83 for (i = rnk = 0; i < sz->rnk; ++i) {
|
cannam@127
|
84 if (sz->dims[i].n != 1)
|
cannam@127
|
85 x->dims[rnk++] = sz->dims[i];
|
cannam@127
|
86 }
|
cannam@127
|
87 return x;
|
cannam@127
|
88 }
|
cannam@127
|
89
|
cannam@127
|
90 /* Like tensor_copy, but eliminate n == 1 dimensions, which
|
cannam@127
|
91 never affect any transform or transform vector.
|
cannam@127
|
92
|
cannam@127
|
93 Also, we sort the tensor into a canonical order of decreasing
|
cannam@127
|
94 strides (see X(dimcmp) for an exact definition). In general,
|
cannam@127
|
95 processing a loop/array in order of decreasing stride will improve
|
cannam@127
|
96 locality. Both forward and backwards traversal of the tensor are
|
cannam@127
|
97 considered e.g. by vrank-geq1, so sorting in increasing
|
cannam@127
|
98 vs. decreasing order is not really important. */
|
cannam@127
|
99 tensor *X(tensor_compress)(const tensor *sz)
|
cannam@127
|
100 {
|
cannam@127
|
101 tensor *x = really_compress(sz);
|
cannam@127
|
102 canonicalize(x);
|
cannam@127
|
103 return x;
|
cannam@127
|
104 }
|
cannam@127
|
105
|
cannam@127
|
106 /* Return whether the strides of a and b are such that they form an
|
cannam@127
|
107 effective contiguous 1d array. Assumes that a.is >= b.is. */
|
cannam@127
|
108 static int strides_contig(iodim *a, iodim *b)
|
cannam@127
|
109 {
|
cannam@127
|
110 return (a->is == b->is * b->n && a->os == b->os * b->n);
|
cannam@127
|
111 }
|
cannam@127
|
112
|
cannam@127
|
113 /* Like tensor_compress, but also compress into one dimension any
|
cannam@127
|
114 group of dimensions that form a contiguous block of indices with
|
cannam@127
|
115 some stride. (This can safely be done for transform vector sizes.) */
|
cannam@127
|
116 tensor *X(tensor_compress_contiguous)(const tensor *sz)
|
cannam@127
|
117 {
|
cannam@127
|
118 int i, rnk;
|
cannam@127
|
119 tensor *sz2, *x;
|
cannam@127
|
120
|
cannam@127
|
121 if (X(tensor_sz)(sz) == 0)
|
cannam@127
|
122 return X(mktensor)(RNK_MINFTY);
|
cannam@127
|
123
|
cannam@127
|
124 sz2 = really_compress(sz);
|
cannam@127
|
125 A(FINITE_RNK(sz2->rnk));
|
cannam@127
|
126
|
cannam@127
|
127 if (sz2->rnk <= 1) { /* nothing to compress. */
|
cannam@127
|
128 if (0) {
|
cannam@127
|
129 /* this call is redundant, because "sz->rnk <= 1" implies
|
cannam@127
|
130 that the tensor is already canonical, but I am writing
|
cannam@127
|
131 it explicitly because "logically" we need to canonicalize
|
cannam@127
|
132 the tensor before returning. */
|
cannam@127
|
133 canonicalize(sz2);
|
cannam@127
|
134 }
|
cannam@127
|
135 return sz2;
|
cannam@127
|
136 }
|
cannam@127
|
137
|
cannam@127
|
138 /* sort in descending order of |istride|, so that compressible
|
cannam@127
|
139 dimensions appear contigously */
|
cannam@127
|
140 qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim),
|
cannam@127
|
141 (int (*)(const void *, const void *))compare_by_istride);
|
cannam@127
|
142
|
cannam@127
|
143 /* compute what the rank will be after compression */
|
cannam@127
|
144 for (i = rnk = 1; i < sz2->rnk; ++i)
|
cannam@127
|
145 if (!strides_contig(sz2->dims + i - 1, sz2->dims + i))
|
cannam@127
|
146 ++rnk;
|
cannam@127
|
147
|
cannam@127
|
148 /* merge adjacent dimensions whenever possible */
|
cannam@127
|
149 x = X(mktensor)(rnk);
|
cannam@127
|
150 x->dims[0] = sz2->dims[0];
|
cannam@127
|
151 for (i = rnk = 1; i < sz2->rnk; ++i) {
|
cannam@127
|
152 if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) {
|
cannam@127
|
153 x->dims[rnk - 1].n *= sz2->dims[i].n;
|
cannam@127
|
154 x->dims[rnk - 1].is = sz2->dims[i].is;
|
cannam@127
|
155 x->dims[rnk - 1].os = sz2->dims[i].os;
|
cannam@127
|
156 } else {
|
cannam@127
|
157 A(rnk < x->rnk);
|
cannam@127
|
158 x->dims[rnk++] = sz2->dims[i];
|
cannam@127
|
159 }
|
cannam@127
|
160 }
|
cannam@127
|
161
|
cannam@127
|
162 X(tensor_destroy)(sz2);
|
cannam@127
|
163
|
cannam@127
|
164 /* reduce to canonical form */
|
cannam@127
|
165 canonicalize(x);
|
cannam@127
|
166 return x;
|
cannam@127
|
167 }
|
cannam@127
|
168
|
cannam@127
|
169 /* The inverse of X(tensor_append): splits the sz tensor into
|
cannam@127
|
170 tensor a followed by tensor b, where a's rank is arnk. */
|
cannam@127
|
171 void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
|
cannam@127
|
172 {
|
cannam@127
|
173 A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));
|
cannam@127
|
174
|
cannam@127
|
175 *a = X(tensor_copy_sub)(sz, 0, arnk);
|
cannam@127
|
176 *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
|
cannam@127
|
177 }
|
cannam@127
|
178
|
cannam@127
|
179 /* TRUE if the two tensors are equal */
|
cannam@127
|
180 int X(tensor_equal)(const tensor *a, const tensor *b)
|
cannam@127
|
181 {
|
cannam@127
|
182 if (a->rnk != b->rnk)
|
cannam@127
|
183 return 0;
|
cannam@127
|
184
|
cannam@127
|
185 if (FINITE_RNK(a->rnk)) {
|
cannam@127
|
186 int i;
|
cannam@127
|
187 for (i = 0; i < a->rnk; ++i)
|
cannam@127
|
188 if (0
|
cannam@127
|
189 || a->dims[i].n != b->dims[i].n
|
cannam@127
|
190 || a->dims[i].is != b->dims[i].is
|
cannam@127
|
191 || a->dims[i].os != b->dims[i].os
|
cannam@127
|
192 )
|
cannam@127
|
193 return 0;
|
cannam@127
|
194 }
|
cannam@127
|
195
|
cannam@127
|
196 return 1;
|
cannam@127
|
197 }
|
cannam@127
|
198
|
cannam@127
|
199 /* TRUE if the sets of input and output locations described by
|
cannam@127
|
200 (append sz vecsz) are the same */
|
cannam@127
|
201 int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz)
|
cannam@127
|
202 {
|
cannam@127
|
203 tensor *t = X(tensor_append)(sz, vecsz);
|
cannam@127
|
204 tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS);
|
cannam@127
|
205 tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS);
|
cannam@127
|
206 tensor *tic = X(tensor_compress_contiguous)(ti);
|
cannam@127
|
207 tensor *toc = X(tensor_compress_contiguous)(to);
|
cannam@127
|
208
|
cannam@127
|
209 int retval = X(tensor_equal)(tic, toc);
|
cannam@127
|
210
|
cannam@127
|
211 X(tensor_destroy)(t);
|
cannam@127
|
212 X(tensor_destroy4)(ti, to, tic, toc);
|
cannam@127
|
213
|
cannam@127
|
214 return retval;
|
cannam@127
|
215 }
|