annotate src/zlib-1.2.7/contrib/infback9/inftree9.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 8a15ff55d9af
children
rev   line source
cannam@89 1 /* inftree9.c -- generate Huffman trees for efficient decoding
cannam@89 2 * Copyright (C) 1995-2012 Mark Adler
cannam@89 3 * For conditions of distribution and use, see copyright notice in zlib.h
cannam@89 4 */
cannam@89 5
cannam@89 6 #include "zutil.h"
cannam@89 7 #include "inftree9.h"
cannam@89 8
cannam@89 9 #define MAXBITS 15
cannam@89 10
cannam@89 11 const char inflate9_copyright[] =
cannam@89 12 " inflate9 1.2.7 Copyright 1995-2012 Mark Adler ";
cannam@89 13 /*
cannam@89 14 If you use the zlib library in a product, an acknowledgment is welcome
cannam@89 15 in the documentation of your product. If for some reason you cannot
cannam@89 16 include such an acknowledgment, I would appreciate that you keep this
cannam@89 17 copyright string in the executable of your product.
cannam@89 18 */
cannam@89 19
cannam@89 20 /*
cannam@89 21 Build a set of tables to decode the provided canonical Huffman code.
cannam@89 22 The code lengths are lens[0..codes-1]. The result starts at *table,
cannam@89 23 whose indices are 0..2^bits-1. work is a writable array of at least
cannam@89 24 lens shorts, which is used as a work area. type is the type of code
cannam@89 25 to be generated, CODES, LENS, or DISTS. On return, zero is success,
cannam@89 26 -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
cannam@89 27 on return points to the next available entry's address. bits is the
cannam@89 28 requested root table index bits, and on return it is the actual root
cannam@89 29 table index bits. It will differ if the request is greater than the
cannam@89 30 longest code or if it is less than the shortest code.
cannam@89 31 */
cannam@89 32 int inflate_table9(type, lens, codes, table, bits, work)
cannam@89 33 codetype type;
cannam@89 34 unsigned short FAR *lens;
cannam@89 35 unsigned codes;
cannam@89 36 code FAR * FAR *table;
cannam@89 37 unsigned FAR *bits;
cannam@89 38 unsigned short FAR *work;
cannam@89 39 {
cannam@89 40 unsigned len; /* a code's length in bits */
cannam@89 41 unsigned sym; /* index of code symbols */
cannam@89 42 unsigned min, max; /* minimum and maximum code lengths */
cannam@89 43 unsigned root; /* number of index bits for root table */
cannam@89 44 unsigned curr; /* number of index bits for current table */
cannam@89 45 unsigned drop; /* code bits to drop for sub-table */
cannam@89 46 int left; /* number of prefix codes available */
cannam@89 47 unsigned used; /* code entries in table used */
cannam@89 48 unsigned huff; /* Huffman code */
cannam@89 49 unsigned incr; /* for incrementing code, index */
cannam@89 50 unsigned fill; /* index for replicating entries */
cannam@89 51 unsigned low; /* low bits for current root entry */
cannam@89 52 unsigned mask; /* mask for low root bits */
cannam@89 53 code this; /* table entry for duplication */
cannam@89 54 code FAR *next; /* next available space in table */
cannam@89 55 const unsigned short FAR *base; /* base value table to use */
cannam@89 56 const unsigned short FAR *extra; /* extra bits table to use */
cannam@89 57 int end; /* use base and extra for symbol > end */
cannam@89 58 unsigned short count[MAXBITS+1]; /* number of codes of each length */
cannam@89 59 unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
cannam@89 60 static const unsigned short lbase[31] = { /* Length codes 257..285 base */
cannam@89 61 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17,
cannam@89 62 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115,
cannam@89 63 131, 163, 195, 227, 3, 0, 0};
cannam@89 64 static const unsigned short lext[31] = { /* Length codes 257..285 extra */
cannam@89 65 128, 128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129,
cannam@89 66 130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132,
cannam@89 67 133, 133, 133, 133, 144, 78, 68};
cannam@89 68 static const unsigned short dbase[32] = { /* Distance codes 0..31 base */
cannam@89 69 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49,
cannam@89 70 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073,
cannam@89 71 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153};
cannam@89 72 static const unsigned short dext[32] = { /* Distance codes 0..31 extra */
cannam@89 73 128, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132,
cannam@89 74 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138,
cannam@89 75 139, 139, 140, 140, 141, 141, 142, 142};
cannam@89 76
cannam@89 77 /*
cannam@89 78 Process a set of code lengths to create a canonical Huffman code. The
cannam@89 79 code lengths are lens[0..codes-1]. Each length corresponds to the
cannam@89 80 symbols 0..codes-1. The Huffman code is generated by first sorting the
cannam@89 81 symbols by length from short to long, and retaining the symbol order
cannam@89 82 for codes with equal lengths. Then the code starts with all zero bits
cannam@89 83 for the first code of the shortest length, and the codes are integer
cannam@89 84 increments for the same length, and zeros are appended as the length
cannam@89 85 increases. For the deflate format, these bits are stored backwards
cannam@89 86 from their more natural integer increment ordering, and so when the
cannam@89 87 decoding tables are built in the large loop below, the integer codes
cannam@89 88 are incremented backwards.
cannam@89 89
cannam@89 90 This routine assumes, but does not check, that all of the entries in
cannam@89 91 lens[] are in the range 0..MAXBITS. The caller must assure this.
cannam@89 92 1..MAXBITS is interpreted as that code length. zero means that that
cannam@89 93 symbol does not occur in this code.
cannam@89 94
cannam@89 95 The codes are sorted by computing a count of codes for each length,
cannam@89 96 creating from that a table of starting indices for each length in the
cannam@89 97 sorted table, and then entering the symbols in order in the sorted
cannam@89 98 table. The sorted table is work[], with that space being provided by
cannam@89 99 the caller.
cannam@89 100
cannam@89 101 The length counts are used for other purposes as well, i.e. finding
cannam@89 102 the minimum and maximum length codes, determining if there are any
cannam@89 103 codes at all, checking for a valid set of lengths, and looking ahead
cannam@89 104 at length counts to determine sub-table sizes when building the
cannam@89 105 decoding tables.
cannam@89 106 */
cannam@89 107
cannam@89 108 /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
cannam@89 109 for (len = 0; len <= MAXBITS; len++)
cannam@89 110 count[len] = 0;
cannam@89 111 for (sym = 0; sym < codes; sym++)
cannam@89 112 count[lens[sym]]++;
cannam@89 113
cannam@89 114 /* bound code lengths, force root to be within code lengths */
cannam@89 115 root = *bits;
cannam@89 116 for (max = MAXBITS; max >= 1; max--)
cannam@89 117 if (count[max] != 0) break;
cannam@89 118 if (root > max) root = max;
cannam@89 119 if (max == 0) return -1; /* no codes! */
cannam@89 120 for (min = 1; min <= MAXBITS; min++)
cannam@89 121 if (count[min] != 0) break;
cannam@89 122 if (root < min) root = min;
cannam@89 123
cannam@89 124 /* check for an over-subscribed or incomplete set of lengths */
cannam@89 125 left = 1;
cannam@89 126 for (len = 1; len <= MAXBITS; len++) {
cannam@89 127 left <<= 1;
cannam@89 128 left -= count[len];
cannam@89 129 if (left < 0) return -1; /* over-subscribed */
cannam@89 130 }
cannam@89 131 if (left > 0 && (type == CODES || max != 1))
cannam@89 132 return -1; /* incomplete set */
cannam@89 133
cannam@89 134 /* generate offsets into symbol table for each length for sorting */
cannam@89 135 offs[1] = 0;
cannam@89 136 for (len = 1; len < MAXBITS; len++)
cannam@89 137 offs[len + 1] = offs[len] + count[len];
cannam@89 138
cannam@89 139 /* sort symbols by length, by symbol order within each length */
cannam@89 140 for (sym = 0; sym < codes; sym++)
cannam@89 141 if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
cannam@89 142
cannam@89 143 /*
cannam@89 144 Create and fill in decoding tables. In this loop, the table being
cannam@89 145 filled is at next and has curr index bits. The code being used is huff
cannam@89 146 with length len. That code is converted to an index by dropping drop
cannam@89 147 bits off of the bottom. For codes where len is less than drop + curr,
cannam@89 148 those top drop + curr - len bits are incremented through all values to
cannam@89 149 fill the table with replicated entries.
cannam@89 150
cannam@89 151 root is the number of index bits for the root table. When len exceeds
cannam@89 152 root, sub-tables are created pointed to by the root entry with an index
cannam@89 153 of the low root bits of huff. This is saved in low to check for when a
cannam@89 154 new sub-table should be started. drop is zero when the root table is
cannam@89 155 being filled, and drop is root when sub-tables are being filled.
cannam@89 156
cannam@89 157 When a new sub-table is needed, it is necessary to look ahead in the
cannam@89 158 code lengths to determine what size sub-table is needed. The length
cannam@89 159 counts are used for this, and so count[] is decremented as codes are
cannam@89 160 entered in the tables.
cannam@89 161
cannam@89 162 used keeps track of how many table entries have been allocated from the
cannam@89 163 provided *table space. It is checked for LENS and DIST tables against
cannam@89 164 the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
cannam@89 165 the initial root table size constants. See the comments in inftree9.h
cannam@89 166 for more information.
cannam@89 167
cannam@89 168 sym increments through all symbols, and the loop terminates when
cannam@89 169 all codes of length max, i.e. all codes, have been processed. This
cannam@89 170 routine permits incomplete codes, so another loop after this one fills
cannam@89 171 in the rest of the decoding tables with invalid code markers.
cannam@89 172 */
cannam@89 173
cannam@89 174 /* set up for code type */
cannam@89 175 switch (type) {
cannam@89 176 case CODES:
cannam@89 177 base = extra = work; /* dummy value--not used */
cannam@89 178 end = 19;
cannam@89 179 break;
cannam@89 180 case LENS:
cannam@89 181 base = lbase;
cannam@89 182 base -= 257;
cannam@89 183 extra = lext;
cannam@89 184 extra -= 257;
cannam@89 185 end = 256;
cannam@89 186 break;
cannam@89 187 default: /* DISTS */
cannam@89 188 base = dbase;
cannam@89 189 extra = dext;
cannam@89 190 end = -1;
cannam@89 191 }
cannam@89 192
cannam@89 193 /* initialize state for loop */
cannam@89 194 huff = 0; /* starting code */
cannam@89 195 sym = 0; /* starting code symbol */
cannam@89 196 len = min; /* starting code length */
cannam@89 197 next = *table; /* current table to fill in */
cannam@89 198 curr = root; /* current table index bits */
cannam@89 199 drop = 0; /* current bits to drop from code for index */
cannam@89 200 low = (unsigned)(-1); /* trigger new sub-table when len > root */
cannam@89 201 used = 1U << root; /* use root table entries */
cannam@89 202 mask = used - 1; /* mask for comparing low */
cannam@89 203
cannam@89 204 /* check available table space */
cannam@89 205 if ((type == LENS && used >= ENOUGH_LENS) ||
cannam@89 206 (type == DISTS && used >= ENOUGH_DISTS))
cannam@89 207 return 1;
cannam@89 208
cannam@89 209 /* process all codes and make table entries */
cannam@89 210 for (;;) {
cannam@89 211 /* create table entry */
cannam@89 212 this.bits = (unsigned char)(len - drop);
cannam@89 213 if ((int)(work[sym]) < end) {
cannam@89 214 this.op = (unsigned char)0;
cannam@89 215 this.val = work[sym];
cannam@89 216 }
cannam@89 217 else if ((int)(work[sym]) > end) {
cannam@89 218 this.op = (unsigned char)(extra[work[sym]]);
cannam@89 219 this.val = base[work[sym]];
cannam@89 220 }
cannam@89 221 else {
cannam@89 222 this.op = (unsigned char)(32 + 64); /* end of block */
cannam@89 223 this.val = 0;
cannam@89 224 }
cannam@89 225
cannam@89 226 /* replicate for those indices with low len bits equal to huff */
cannam@89 227 incr = 1U << (len - drop);
cannam@89 228 fill = 1U << curr;
cannam@89 229 do {
cannam@89 230 fill -= incr;
cannam@89 231 next[(huff >> drop) + fill] = this;
cannam@89 232 } while (fill != 0);
cannam@89 233
cannam@89 234 /* backwards increment the len-bit code huff */
cannam@89 235 incr = 1U << (len - 1);
cannam@89 236 while (huff & incr)
cannam@89 237 incr >>= 1;
cannam@89 238 if (incr != 0) {
cannam@89 239 huff &= incr - 1;
cannam@89 240 huff += incr;
cannam@89 241 }
cannam@89 242 else
cannam@89 243 huff = 0;
cannam@89 244
cannam@89 245 /* go to next symbol, update count, len */
cannam@89 246 sym++;
cannam@89 247 if (--(count[len]) == 0) {
cannam@89 248 if (len == max) break;
cannam@89 249 len = lens[work[sym]];
cannam@89 250 }
cannam@89 251
cannam@89 252 /* create new sub-table if needed */
cannam@89 253 if (len > root && (huff & mask) != low) {
cannam@89 254 /* if first time, transition to sub-tables */
cannam@89 255 if (drop == 0)
cannam@89 256 drop = root;
cannam@89 257
cannam@89 258 /* increment past last table */
cannam@89 259 next += 1U << curr;
cannam@89 260
cannam@89 261 /* determine length of next table */
cannam@89 262 curr = len - drop;
cannam@89 263 left = (int)(1 << curr);
cannam@89 264 while (curr + drop < max) {
cannam@89 265 left -= count[curr + drop];
cannam@89 266 if (left <= 0) break;
cannam@89 267 curr++;
cannam@89 268 left <<= 1;
cannam@89 269 }
cannam@89 270
cannam@89 271 /* check for enough space */
cannam@89 272 used += 1U << curr;
cannam@89 273 if ((type == LENS && used >= ENOUGH_LENS) ||
cannam@89 274 (type == DISTS && used >= ENOUGH_DISTS))
cannam@89 275 return 1;
cannam@89 276
cannam@89 277 /* point entry in root table to sub-table */
cannam@89 278 low = huff & mask;
cannam@89 279 (*table)[low].op = (unsigned char)curr;
cannam@89 280 (*table)[low].bits = (unsigned char)root;
cannam@89 281 (*table)[low].val = (unsigned short)(next - *table);
cannam@89 282 }
cannam@89 283 }
cannam@89 284
cannam@89 285 /*
cannam@89 286 Fill in rest of table for incomplete codes. This loop is similar to the
cannam@89 287 loop above in incrementing huff for table indices. It is assumed that
cannam@89 288 len is equal to curr + drop, so there is no loop needed to increment
cannam@89 289 through high index bits. When the current sub-table is filled, the loop
cannam@89 290 drops back to the root table to fill in any remaining entries there.
cannam@89 291 */
cannam@89 292 this.op = (unsigned char)64; /* invalid code marker */
cannam@89 293 this.bits = (unsigned char)(len - drop);
cannam@89 294 this.val = (unsigned short)0;
cannam@89 295 while (huff != 0) {
cannam@89 296 /* when done with sub-table, drop back to root table */
cannam@89 297 if (drop != 0 && (huff & mask) != low) {
cannam@89 298 drop = 0;
cannam@89 299 len = root;
cannam@89 300 next = *table;
cannam@89 301 curr = root;
cannam@89 302 this.bits = (unsigned char)len;
cannam@89 303 }
cannam@89 304
cannam@89 305 /* put invalid code marker in table */
cannam@89 306 next[huff >> drop] = this;
cannam@89 307
cannam@89 308 /* backwards increment the len-bit code huff */
cannam@89 309 incr = 1U << (len - 1);
cannam@89 310 while (huff & incr)
cannam@89 311 incr >>= 1;
cannam@89 312 if (incr != 0) {
cannam@89 313 huff &= incr - 1;
cannam@89 314 huff += incr;
cannam@89 315 }
cannam@89 316 else
cannam@89 317 huff = 0;
cannam@89 318 }
cannam@89 319
cannam@89 320 /* set return parameters */
cannam@89 321 *table += used;
cannam@89 322 *bits = root;
cannam@89 323 return 0;
cannam@89 324 }