annotate src/libvorbis-1.3.3/lib/lsp.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 98c1576536ae
children
rev   line source
cannam@86 1 /********************************************************************
cannam@86 2 * *
cannam@86 3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
cannam@86 4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
cannam@86 5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
cannam@86 6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
cannam@86 7 * *
cannam@86 8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 *
cannam@86 9 * by the Xiph.Org Foundation http://www.xiph.org/ *
cannam@86 10 * *
cannam@86 11 ********************************************************************
cannam@86 12
cannam@86 13 function: LSP (also called LSF) conversion routines
cannam@86 14 last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $
cannam@86 15
cannam@86 16 The LSP generation code is taken (with minimal modification and a
cannam@86 17 few bugfixes) from "On the Computation of the LSP Frequencies" by
cannam@86 18 Joseph Rothweiler (see http://www.rothweiler.us for contact info).
cannam@86 19 The paper is available at:
cannam@86 20
cannam@86 21 http://www.myown1.com/joe/lsf
cannam@86 22
cannam@86 23 ********************************************************************/
cannam@86 24
cannam@86 25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
cannam@86 26 an iterative root polisher (CACM algorithm 283). It *is* possible
cannam@86 27 to confuse this algorithm into not converging; that should only
cannam@86 28 happen with absurdly closely spaced roots (very sharp peaks in the
cannam@86 29 LPC f response) which in turn should be impossible in our use of
cannam@86 30 the code. If this *does* happen anyway, it's a bug in the floor
cannam@86 31 finder; find the cause of the confusion (probably a single bin
cannam@86 32 spike or accidental near-float-limit resolution problems) and
cannam@86 33 correct it. */
cannam@86 34
cannam@86 35 #include <math.h>
cannam@86 36 #include <string.h>
cannam@86 37 #include <stdlib.h>
cannam@86 38 #include "lsp.h"
cannam@86 39 #include "os.h"
cannam@86 40 #include "misc.h"
cannam@86 41 #include "lookup.h"
cannam@86 42 #include "scales.h"
cannam@86 43
cannam@86 44 /* three possible LSP to f curve functions; the exact computation
cannam@86 45 (float), a lookup based float implementation, and an integer
cannam@86 46 implementation. The float lookup is likely the optimal choice on
cannam@86 47 any machine with an FPU. The integer implementation is *not* fixed
cannam@86 48 point (due to the need for a large dynamic range and thus a
cannam@86 49 separately tracked exponent) and thus much more complex than the
cannam@86 50 relatively simple float implementations. It's mostly for future
cannam@86 51 work on a fully fixed point implementation for processors like the
cannam@86 52 ARM family. */
cannam@86 53
cannam@86 54 /* define either of these (preferably FLOAT_LOOKUP) to have faster
cannam@86 55 but less precise implementation. */
cannam@86 56 #undef FLOAT_LOOKUP
cannam@86 57 #undef INT_LOOKUP
cannam@86 58
cannam@86 59 #ifdef FLOAT_LOOKUP
cannam@86 60 #include "lookup.c" /* catch this in the build system; we #include for
cannam@86 61 compilers (like gcc) that can't inline across
cannam@86 62 modules */
cannam@86 63
cannam@86 64 /* side effect: changes *lsp to cosines of lsp */
cannam@86 65 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
cannam@86 66 float amp,float ampoffset){
cannam@86 67 int i;
cannam@86 68 float wdel=M_PI/ln;
cannam@86 69 vorbis_fpu_control fpu;
cannam@86 70
cannam@86 71 vorbis_fpu_setround(&fpu);
cannam@86 72 for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
cannam@86 73
cannam@86 74 i=0;
cannam@86 75 while(i<n){
cannam@86 76 int k=map[i];
cannam@86 77 int qexp;
cannam@86 78 float p=.7071067812f;
cannam@86 79 float q=.7071067812f;
cannam@86 80 float w=vorbis_coslook(wdel*k);
cannam@86 81 float *ftmp=lsp;
cannam@86 82 int c=m>>1;
cannam@86 83
cannam@86 84 while(c--){
cannam@86 85 q*=ftmp[0]-w;
cannam@86 86 p*=ftmp[1]-w;
cannam@86 87 ftmp+=2;
cannam@86 88 }
cannam@86 89
cannam@86 90 if(m&1){
cannam@86 91 /* odd order filter; slightly assymetric */
cannam@86 92 /* the last coefficient */
cannam@86 93 q*=ftmp[0]-w;
cannam@86 94 q*=q;
cannam@86 95 p*=p*(1.f-w*w);
cannam@86 96 }else{
cannam@86 97 /* even order filter; still symmetric */
cannam@86 98 q*=q*(1.f+w);
cannam@86 99 p*=p*(1.f-w);
cannam@86 100 }
cannam@86 101
cannam@86 102 q=frexp(p+q,&qexp);
cannam@86 103 q=vorbis_fromdBlook(amp*
cannam@86 104 vorbis_invsqlook(q)*
cannam@86 105 vorbis_invsq2explook(qexp+m)-
cannam@86 106 ampoffset);
cannam@86 107
cannam@86 108 do{
cannam@86 109 curve[i++]*=q;
cannam@86 110 }while(map[i]==k);
cannam@86 111 }
cannam@86 112 vorbis_fpu_restore(fpu);
cannam@86 113 }
cannam@86 114
cannam@86 115 #else
cannam@86 116
cannam@86 117 #ifdef INT_LOOKUP
cannam@86 118 #include "lookup.c" /* catch this in the build system; we #include for
cannam@86 119 compilers (like gcc) that can't inline across
cannam@86 120 modules */
cannam@86 121
cannam@86 122 static const int MLOOP_1[64]={
cannam@86 123 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
cannam@86 124 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
cannam@86 125 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
cannam@86 126 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
cannam@86 127 };
cannam@86 128
cannam@86 129 static const int MLOOP_2[64]={
cannam@86 130 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
cannam@86 131 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
cannam@86 132 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
cannam@86 133 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
cannam@86 134 };
cannam@86 135
cannam@86 136 static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
cannam@86 137
cannam@86 138
cannam@86 139 /* side effect: changes *lsp to cosines of lsp */
cannam@86 140 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
cannam@86 141 float amp,float ampoffset){
cannam@86 142
cannam@86 143 /* 0 <= m < 256 */
cannam@86 144
cannam@86 145 /* set up for using all int later */
cannam@86 146 int i;
cannam@86 147 int ampoffseti=rint(ampoffset*4096.f);
cannam@86 148 int ampi=rint(amp*16.f);
cannam@86 149 long *ilsp=alloca(m*sizeof(*ilsp));
cannam@86 150 for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
cannam@86 151
cannam@86 152 i=0;
cannam@86 153 while(i<n){
cannam@86 154 int j,k=map[i];
cannam@86 155 unsigned long pi=46341; /* 2**-.5 in 0.16 */
cannam@86 156 unsigned long qi=46341;
cannam@86 157 int qexp=0,shift;
cannam@86 158 long wi=vorbis_coslook_i(k*65536/ln);
cannam@86 159
cannam@86 160 qi*=labs(ilsp[0]-wi);
cannam@86 161 pi*=labs(ilsp[1]-wi);
cannam@86 162
cannam@86 163 for(j=3;j<m;j+=2){
cannam@86 164 if(!(shift=MLOOP_1[(pi|qi)>>25]))
cannam@86 165 if(!(shift=MLOOP_2[(pi|qi)>>19]))
cannam@86 166 shift=MLOOP_3[(pi|qi)>>16];
cannam@86 167 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
cannam@86 168 pi=(pi>>shift)*labs(ilsp[j]-wi);
cannam@86 169 qexp+=shift;
cannam@86 170 }
cannam@86 171 if(!(shift=MLOOP_1[(pi|qi)>>25]))
cannam@86 172 if(!(shift=MLOOP_2[(pi|qi)>>19]))
cannam@86 173 shift=MLOOP_3[(pi|qi)>>16];
cannam@86 174
cannam@86 175 /* pi,qi normalized collectively, both tracked using qexp */
cannam@86 176
cannam@86 177 if(m&1){
cannam@86 178 /* odd order filter; slightly assymetric */
cannam@86 179 /* the last coefficient */
cannam@86 180 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
cannam@86 181 pi=(pi>>shift)<<14;
cannam@86 182 qexp+=shift;
cannam@86 183
cannam@86 184 if(!(shift=MLOOP_1[(pi|qi)>>25]))
cannam@86 185 if(!(shift=MLOOP_2[(pi|qi)>>19]))
cannam@86 186 shift=MLOOP_3[(pi|qi)>>16];
cannam@86 187
cannam@86 188 pi>>=shift;
cannam@86 189 qi>>=shift;
cannam@86 190 qexp+=shift-14*((m+1)>>1);
cannam@86 191
cannam@86 192 pi=((pi*pi)>>16);
cannam@86 193 qi=((qi*qi)>>16);
cannam@86 194 qexp=qexp*2+m;
cannam@86 195
cannam@86 196 pi*=(1<<14)-((wi*wi)>>14);
cannam@86 197 qi+=pi>>14;
cannam@86 198
cannam@86 199 }else{
cannam@86 200 /* even order filter; still symmetric */
cannam@86 201
cannam@86 202 /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
cannam@86 203 worth tracking step by step */
cannam@86 204
cannam@86 205 pi>>=shift;
cannam@86 206 qi>>=shift;
cannam@86 207 qexp+=shift-7*m;
cannam@86 208
cannam@86 209 pi=((pi*pi)>>16);
cannam@86 210 qi=((qi*qi)>>16);
cannam@86 211 qexp=qexp*2+m;
cannam@86 212
cannam@86 213 pi*=(1<<14)-wi;
cannam@86 214 qi*=(1<<14)+wi;
cannam@86 215 qi=(qi+pi)>>14;
cannam@86 216
cannam@86 217 }
cannam@86 218
cannam@86 219
cannam@86 220 /* we've let the normalization drift because it wasn't important;
cannam@86 221 however, for the lookup, things must be normalized again. We
cannam@86 222 need at most one right shift or a number of left shifts */
cannam@86 223
cannam@86 224 if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
cannam@86 225 qi>>=1; qexp++;
cannam@86 226 }else
cannam@86 227 while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
cannam@86 228 qi<<=1; qexp--;
cannam@86 229 }
cannam@86 230
cannam@86 231 amp=vorbis_fromdBlook_i(ampi* /* n.4 */
cannam@86 232 vorbis_invsqlook_i(qi,qexp)-
cannam@86 233 /* m.8, m+n<=8 */
cannam@86 234 ampoffseti); /* 8.12[0] */
cannam@86 235
cannam@86 236 curve[i]*=amp;
cannam@86 237 while(map[++i]==k)curve[i]*=amp;
cannam@86 238 }
cannam@86 239 }
cannam@86 240
cannam@86 241 #else
cannam@86 242
cannam@86 243 /* old, nonoptimized but simple version for any poor sap who needs to
cannam@86 244 figure out what the hell this code does, or wants the other
cannam@86 245 fraction of a dB precision */
cannam@86 246
cannam@86 247 /* side effect: changes *lsp to cosines of lsp */
cannam@86 248 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
cannam@86 249 float amp,float ampoffset){
cannam@86 250 int i;
cannam@86 251 float wdel=M_PI/ln;
cannam@86 252 for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
cannam@86 253
cannam@86 254 i=0;
cannam@86 255 while(i<n){
cannam@86 256 int j,k=map[i];
cannam@86 257 float p=.5f;
cannam@86 258 float q=.5f;
cannam@86 259 float w=2.f*cos(wdel*k);
cannam@86 260 for(j=1;j<m;j+=2){
cannam@86 261 q *= w-lsp[j-1];
cannam@86 262 p *= w-lsp[j];
cannam@86 263 }
cannam@86 264 if(j==m){
cannam@86 265 /* odd order filter; slightly assymetric */
cannam@86 266 /* the last coefficient */
cannam@86 267 q*=w-lsp[j-1];
cannam@86 268 p*=p*(4.f-w*w);
cannam@86 269 q*=q;
cannam@86 270 }else{
cannam@86 271 /* even order filter; still symmetric */
cannam@86 272 p*=p*(2.f-w);
cannam@86 273 q*=q*(2.f+w);
cannam@86 274 }
cannam@86 275
cannam@86 276 q=fromdB(amp/sqrt(p+q)-ampoffset);
cannam@86 277
cannam@86 278 curve[i]*=q;
cannam@86 279 while(map[++i]==k)curve[i]*=q;
cannam@86 280 }
cannam@86 281 }
cannam@86 282
cannam@86 283 #endif
cannam@86 284 #endif
cannam@86 285
cannam@86 286 static void cheby(float *g, int ord) {
cannam@86 287 int i, j;
cannam@86 288
cannam@86 289 g[0] *= .5f;
cannam@86 290 for(i=2; i<= ord; i++) {
cannam@86 291 for(j=ord; j >= i; j--) {
cannam@86 292 g[j-2] -= g[j];
cannam@86 293 g[j] += g[j];
cannam@86 294 }
cannam@86 295 }
cannam@86 296 }
cannam@86 297
cannam@86 298 static int comp(const void *a,const void *b){
cannam@86 299 return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
cannam@86 300 }
cannam@86 301
cannam@86 302 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
cannam@86 303 but there are root sets for which it gets into limit cycles
cannam@86 304 (exacerbated by zero suppression) and fails. We can't afford to
cannam@86 305 fail, even if the failure is 1 in 100,000,000, so we now use
cannam@86 306 Laguerre and later polish with Newton-Raphson (which can then
cannam@86 307 afford to fail) */
cannam@86 308
cannam@86 309 #define EPSILON 10e-7
cannam@86 310 static int Laguerre_With_Deflation(float *a,int ord,float *r){
cannam@86 311 int i,m;
cannam@86 312 double lastdelta=0.f;
cannam@86 313 double *defl=alloca(sizeof(*defl)*(ord+1));
cannam@86 314 for(i=0;i<=ord;i++)defl[i]=a[i];
cannam@86 315
cannam@86 316 for(m=ord;m>0;m--){
cannam@86 317 double new=0.f,delta;
cannam@86 318
cannam@86 319 /* iterate a root */
cannam@86 320 while(1){
cannam@86 321 double p=defl[m],pp=0.f,ppp=0.f,denom;
cannam@86 322
cannam@86 323 /* eval the polynomial and its first two derivatives */
cannam@86 324 for(i=m;i>0;i--){
cannam@86 325 ppp = new*ppp + pp;
cannam@86 326 pp = new*pp + p;
cannam@86 327 p = new*p + defl[i-1];
cannam@86 328 }
cannam@86 329
cannam@86 330 /* Laguerre's method */
cannam@86 331 denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
cannam@86 332 if(denom<0)
cannam@86 333 return(-1); /* complex root! The LPC generator handed us a bad filter */
cannam@86 334
cannam@86 335 if(pp>0){
cannam@86 336 denom = pp + sqrt(denom);
cannam@86 337 if(denom<EPSILON)denom=EPSILON;
cannam@86 338 }else{
cannam@86 339 denom = pp - sqrt(denom);
cannam@86 340 if(denom>-(EPSILON))denom=-(EPSILON);
cannam@86 341 }
cannam@86 342
cannam@86 343 delta = m*p/denom;
cannam@86 344 new -= delta;
cannam@86 345
cannam@86 346 if(delta<0.f)delta*=-1;
cannam@86 347
cannam@86 348 if(fabs(delta/new)<10e-12)break;
cannam@86 349 lastdelta=delta;
cannam@86 350 }
cannam@86 351
cannam@86 352 r[m-1]=new;
cannam@86 353
cannam@86 354 /* forward deflation */
cannam@86 355
cannam@86 356 for(i=m;i>0;i--)
cannam@86 357 defl[i-1]+=new*defl[i];
cannam@86 358 defl++;
cannam@86 359
cannam@86 360 }
cannam@86 361 return(0);
cannam@86 362 }
cannam@86 363
cannam@86 364
cannam@86 365 /* for spit-and-polish only */
cannam@86 366 static int Newton_Raphson(float *a,int ord,float *r){
cannam@86 367 int i, k, count=0;
cannam@86 368 double error=1.f;
cannam@86 369 double *root=alloca(ord*sizeof(*root));
cannam@86 370
cannam@86 371 for(i=0; i<ord;i++) root[i] = r[i];
cannam@86 372
cannam@86 373 while(error>1e-20){
cannam@86 374 error=0;
cannam@86 375
cannam@86 376 for(i=0; i<ord; i++) { /* Update each point. */
cannam@86 377 double pp=0.,delta;
cannam@86 378 double rooti=root[i];
cannam@86 379 double p=a[ord];
cannam@86 380 for(k=ord-1; k>= 0; k--) {
cannam@86 381
cannam@86 382 pp= pp* rooti + p;
cannam@86 383 p = p * rooti + a[k];
cannam@86 384 }
cannam@86 385
cannam@86 386 delta = p/pp;
cannam@86 387 root[i] -= delta;
cannam@86 388 error+= delta*delta;
cannam@86 389 }
cannam@86 390
cannam@86 391 if(count>40)return(-1);
cannam@86 392
cannam@86 393 count++;
cannam@86 394 }
cannam@86 395
cannam@86 396 /* Replaced the original bubble sort with a real sort. With your
cannam@86 397 help, we can eliminate the bubble sort in our lifetime. --Monty */
cannam@86 398
cannam@86 399 for(i=0; i<ord;i++) r[i] = root[i];
cannam@86 400 return(0);
cannam@86 401 }
cannam@86 402
cannam@86 403
cannam@86 404 /* Convert lpc coefficients to lsp coefficients */
cannam@86 405 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
cannam@86 406 int order2=(m+1)>>1;
cannam@86 407 int g1_order,g2_order;
cannam@86 408 float *g1=alloca(sizeof(*g1)*(order2+1));
cannam@86 409 float *g2=alloca(sizeof(*g2)*(order2+1));
cannam@86 410 float *g1r=alloca(sizeof(*g1r)*(order2+1));
cannam@86 411 float *g2r=alloca(sizeof(*g2r)*(order2+1));
cannam@86 412 int i;
cannam@86 413
cannam@86 414 /* even and odd are slightly different base cases */
cannam@86 415 g1_order=(m+1)>>1;
cannam@86 416 g2_order=(m) >>1;
cannam@86 417
cannam@86 418 /* Compute the lengths of the x polynomials. */
cannam@86 419 /* Compute the first half of K & R F1 & F2 polynomials. */
cannam@86 420 /* Compute half of the symmetric and antisymmetric polynomials. */
cannam@86 421 /* Remove the roots at +1 and -1. */
cannam@86 422
cannam@86 423 g1[g1_order] = 1.f;
cannam@86 424 for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
cannam@86 425 g2[g2_order] = 1.f;
cannam@86 426 for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
cannam@86 427
cannam@86 428 if(g1_order>g2_order){
cannam@86 429 for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
cannam@86 430 }else{
cannam@86 431 for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
cannam@86 432 for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
cannam@86 433 }
cannam@86 434
cannam@86 435 /* Convert into polynomials in cos(alpha) */
cannam@86 436 cheby(g1,g1_order);
cannam@86 437 cheby(g2,g2_order);
cannam@86 438
cannam@86 439 /* Find the roots of the 2 even polynomials.*/
cannam@86 440 if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
cannam@86 441 Laguerre_With_Deflation(g2,g2_order,g2r))
cannam@86 442 return(-1);
cannam@86 443
cannam@86 444 Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
cannam@86 445 Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
cannam@86 446
cannam@86 447 qsort(g1r,g1_order,sizeof(*g1r),comp);
cannam@86 448 qsort(g2r,g2_order,sizeof(*g2r),comp);
cannam@86 449
cannam@86 450 for(i=0;i<g1_order;i++)
cannam@86 451 lsp[i*2] = acos(g1r[i]);
cannam@86 452
cannam@86 453 for(i=0;i<g2_order;i++)
cannam@86 454 lsp[i*2+1] = acos(g2r[i]);
cannam@86 455 return(0);
cannam@86 456 }